The diagram shows a floor pattern.

1. Find the measures of all four angles of the kites.

Explain how you obtained your answers.

4

2

2. Two of the kites can fit together to make a hexagon.

Prove that the quadrilateral ABCD is a parallelogram.

. /	
AB = DC AE = CF DE = BF	1. kites are = therefore corr sides=
2 LAED = LBFC	2 1-4=360° P= & so left over 45 on
3 DAED = DCFB	3 2 sides + an - are =
4 AD= RC	u. CPCTC
s ABCD's a d	s. two pairs of opp sides are =
· .	3

Floor Pattern T2

The diagram shows a floor pattern.

1. Find the measures of all four angles of the kites.

Explain how you obtained your answers.

1st 6 80°			
2nd L = 45°	/		
310 c 4th L's	or 112.8°		
	/		

2. Two of the kites can fit together to make a hexagon.

Prove that the quadrilateral ABCD is a parallelogram.

The	two unsh	a Ded	ast	Things	ano	Congruent
because	0	SAS	+	Angle D		ushoded and u
Congruent	to 1	he (other	Anyh	(B)	and for
Some	is true	Bal	_ A_	<u>~ </u>	<u>S</u>	P poste
<u></u>	Congruent,	ts	must	be	_a {	Darrellelo grem

Floor Pattern T3

The diagram shows a floor pattern.

1. Find the measures of all four angles of the kites.

Explain how you obtained your answers.

The inner most angle is 45° because they

Sorm a 360° with seight angles. The cure angle
is 90° because properties of a square, the who

two angles are a half of 360-135-225

225/2-1125 because they are equal

as properties of a kite.

2. Two of the kites can fit together to make a hexagon.

Prove that the quadrilateral ABCD is a parallelogram.

The AB because the kites are equal by CPCTC. I drew points x & Y. As proved by the previous problem mcA xy=90° and dux Dxy=112.5° so mcA XD must be 360-112.5-90=87.5. DAXD is isos. because AX=XD by CPCTC. So, LXAD=2HDX and they both are equal since the both equal 112.5°. LADX and cDAD are supp so AR311DC because =2's int =>11 lines: Since one pair of opp side are both = and 11, the quad must be a parallelugian.

Floor Pattern T4

The diagram shows a floor pattern.

1. Find the measures of all four angles of the kites.

Explain how you obtained your answers.

The outer angles are all night, 90° Decause it is made of two squares

The closest to the middle 36% /

-450 The other 2 are congent,

2152 or 112.5 pach.

4

2. Two of the kites can fit together to make a hexagon.

Prove that the quadrilateral ABCD is a parallelogram.

The letters are to some and equal because $EF^{2}FC$, $EF^{2}AE$ so $DC^{2}AB$ and $DF^{2}FB$, $AE^{2}FC$. AED is congruent to AEFC because 1 $AEF^{2}AE$ AEFC and $AFF^{2}AE$ AED $AEF^{2}AE$ AED AED

The diagram shows a floor pattern.

1. Find the measures of all four angles of the kites.

Explain how you obtained your answers.

$$\frac{360}{8} = 45 - Inner Angle$$

$$\frac{180-45}{2} = 67.5 - part of the 2 side Δ 's

90 - outer angle (conner of a square)
$$\frac{180-90}{2} = 45 - 24 part of side Δ 's

45+67.5 = 112.5 - side Δ 's$$$$

2. Two of the kites can fit together to make a hexagon.

Prove that the quadrilateral ABCD is a parallelogram.

DC=AB A according to congruent corresponding parts.

Angle LAFD=LCEB because LAFE=LFEC and LDFE=LFEB.

Therefore A AFD=ACEB Through CATC AD=CB. Therefore

ABCO is a parellelogram