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Abstract This essay explores the dialectic between the-

orizing teachers’ decision-making and producing a work-

able, theoretically grounded scheme for classroom

observations. One would think that a comprehensive theory

of decision-making would provide the bases for a class-

room observation scheme. It turns out, however, that,

although the theoretical and practical enterprise are in

many ways overlapping, the theoretical underpinnings for

the observation scheme are sufficiently different (narrower

in some ways and broader in others) and the constraints of

almost real-time implementation so strong that the result-

ing analytic scheme is in many ways radically different

from the theoretical framing that gave rise to it. This essay

characterizes and reflects on the evolution of the observa-

tional scheme. It provides details of some of the failed

attempts along the way, in order to document the com-

plexities of constructing such schemes. It is hoped that the

final scheme provided will be of some value, both on

theoretical and pragmatic grounds. Finally, the author

reflects on the relationships between theoretical and

applied research on teacher behavior, and the relevant

research methods.

Keywords Teaching quality � Classroom observations �
Coding scheme � Decision making � Rubric

1 Introduction and overview

1.1 Purposes of this paper

My first major purpose in writing this article is to lay out

the complexities of constructing a classroom analysis

scheme for empirical use, even when a general theory

regarding teacher decision-making is available. On reflec-

tion, this complexity is inevitable: my work in problem

solving (e.g., Schoenfeld, 1985, 1992) consisted of a dec-

ade of dialectic between evolving theoretical ideas and

their empirical manifestations in problem solving courses,

and my research on teacher decision making took nearly

20 years of theory building, intertwined with ongoing

empirical studies. Capturing the dimensions of teaching in

a manageable observation scheme is tremendously chal-

lenging, and readers rarely get to see the twists and turns of

plausible but unworkable ideas that precede the presenta-

tion of the clean final product. I hope that revealing some

of those pathways in this case will prove to be useful.

My second major purpose is to present the scheme

itself—and with it, a new theoretical claim, that the

dimensions highlighted within it may have the potential to

be a necessary and sufficient set of dimensions for the

analysis of effective classroom instruction. The dimen-

sions are all well grounded in the literature, so there is

some hope that this will turn out to be the case—although

only time and more research will render that decision, as

happened in the case of my problem solving book. Should

the scheme prove viable as a classroom analysis tool, it

may also have the potential to be used for charting

teachers’ professional growth and for coaching mathe-

matics teachers.

My third major purpose, which I engage after the

details of this analytic scheme and its development have
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been laid out, is to reflect on the multiple facets of per-

formance reflected in different kinds of studies—those

which engender and test theories of decision making, and

those which examine decisions and actions with an eye

toward how they shape learning. The same core con-

structs are involved, but they play out in different ways,

and are most appropriately explored with different

methods.

1.2 A framework for studying teacher decision making

The publication of my book How We Think (Schoenfeld,

2010) reflected the culmination of a decades-long research

program into human decision-making. The book was aimed

at providing a theoretical answer to the question, ‘‘what

does one need to know in order to explain, on a moment-

by-moment basis, the decisions made by an individual in

the midst of a ‘well practiced’ activity such as teaching?’’

In theoretical terms, it argued that a characterization of the

following four categories of the individual’s knowledge

and activity:

• resources (most centrally, knowledge)

• goals

• orientations (i.e., belief, values, preferences, etc.)

• decision-making (for routine decisions, as implemented

by scripts, schemata, routines, etc.; for non-routine

decisions, as modeled by a form of subjective expected

utility)

is necessary and sufficient to enable one to construct a

model of an individual’s decision-making that is entirely

consistent with the individual’s behavior on a moment-by-

moment basis. (That is, the decisions made by the model

are in synch with those of the individual being modeled, on

a line-by-line basis.) In methodological terms, the book

provided a series of techniques for parsing and analyzing

classroom activity structures:

• an iterated parsing of activities into nested sequences of

phenomenologically coherent ‘‘episodes,’’ reflecting

cohesive sequences of classroom activity;

• the attribution of the teacher’s relevant knowledge and

resources, goals, and beliefs and orientations for each

of these phenomenological episodes; and

• a description of the decision-making (either as part of a

script, schema, or routine if things were going as

planned, or a more complex analysis in the case of non-

routine situations).

As my research group turned to conducting classroom

analyses, it seemed reasonable to assume that both the

major constructs in the theory and our methods of analysis

would be central to the classroom analyses as well.

1.3 Ideas underlying the Algebra Teaching Study

and Mathematics Assessment Project

The broad issue underlying the Algebra Teaching Study

(US National Science Foundation grant DRL 0909815,

Robert Floden and Alan Schoenfeld, Principal Investiga-

tors) and the Mathematics Assessment Project (Bill and

Melinda Gates Foundation Grant OPP53342) is the rela-

tionship between classroom practices and the student

understandings that result from those practices. Which

classroom interactions, which pedagogies, result in stu-

dents’ ‘‘robust understanding’’ of important mathematics?

Our expectation is that the theoretical frameworks that we

develop for analyzing algebra classrooms will be applica-

ble to the teaching of all mathematics content. In order for

the scope of the work to be manageable, however, the

Algebra Teaching Study chose to work on ‘‘contextually

rich algebraic tasks’’—not the stereotypical word problems

of standard algebra texts, but problems that are stated in

words and require some amount of analysis, modeling, and

representation by algebraic symbolization in order to be

solved. Such problems might be encountered in the eight or

ninth grade in current US curricula. A sample task is given

in Fig. 1. The overall scheme for our research is given in

Fig. 2.

Hexagons
(Adapted from Mathematics Assessment Resource Service, http://www.noycefdn.org/resources.php, 
copyright 2003) 

Maria has some hexagonal tiles.  Each side of a tile measures 1 inch.  She 
arranges the tiles in rows; then she finds the perimeter of each arrangement. 

 1 tile 
 Perimeter = 6 inches 

 2 tiles 
 Perimeter = 10 inches 

 3 tiles 

 4 tiles 

(1) Find the perimeter of her arrangement of 4 tiles. 

(2) What is the perimeter of a row of 10 tiles?  How do you know this is the 
correct perimeter for 10 tiles?   

(3) Write an equation for the perimeter p of a row of hexagonal tiles that works 
for any number of tiles, n, in the row.  Explain how the parts of your equation 
relate to the hexagon patterns on the first page. 

(4) Maria made a long row of hexagon tiles.  She made a small mistake when 
counting the perimeter and got 71 inches for the perimeter. How many tiles do 
you think were in her row?  Write an explanation that would convince Maria that 
her perimeter count is incorrect.  

Fig. 1 A contextually rich algebraic task. (Adapted with permission

from Mathematics Assessment Resource Service, http://www.

noycefdn.org/resources.php, copyright 2003)
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The focus of the algebra part of our work is on ‘‘robust

algebraic understandings’’—on students’ abilities to make

sense of, and solve, contextually rich algebraic tasks (or more

broadly, to engage in sense-making in algebra). Our goal is to

explore the links between the two ovals at the bottom of

Fig. 2: can we identify what we believe are productive

classroom practices, and see if/how they are related to student

performance? For pretests and posttests of algebraic perfor-

mance, we selected a collection of contextual algebraic tasks

from the Mathematics Assessment Resource Service,

http://www.noycefdn.org/resources.php. Our challenge,

then, was to develop a coding scheme for the ‘‘independent

variable’’: could we craft a coding scheme that

(a) captures the aspects of teaching we believe are

consequential for students’ development of robust

algebraic understandings, and

(b) is implementable in no more than, say, twice ‘‘real

time?’’

For the scheme to be workable on a large-scale basis, we

wanted to be able to take notes on an hour-long lesson and

then convert those notes into a set of scores on a coding sheet

within another hour or so. Then, we would explore correla-

tions between our codings and student performance on the

pretests and post-tests. This kind of scheme, once robust, has

a number of potential uses. A fundamental aim for the Gates

Mathematics Assessment Project (MAP, 2012) is to trace

teacher growth as teachers become increasingly adept at

using the ‘‘formative assessment lessons’’ that MAP is

building (see http://map.mathshell.org/materials/index.php).

And, it may be that the analytic scheme presented at the end of

this paper will—once there is evidence that teachers who

score high on it do indeed have students who do well math-

ematically—provide a useful device for teacher coaching in

mathematics.

For the balance of this paper, I focus on the creation of

the analytic scheme and the issues that its creation raises.

2 Extant schemes

To sharpen our intuitions, the research group sought out

videotapes of teachers recognized for their skill, and watched

them at length. Then, over time, we looked at a wide range of

schemes that other researchers or professional developers had

constructed for the analysis of classroom interactions:

• Framework for Teaching (Danielson, 2011)

• Classroom Assessment Scoring System (Pianta, La

Paro, & Hamre, 2008)

• Protocol for Language Arts Teaching Observations

(Institute for Research on Policy Education and

Practice, 2011)

• Mathematical Quality of Instruction (University of

Michigan, 2006)

• UTeach Teacher Observation Protocol (Marder &

Walkington, 2012)

• IQA, Instructional Quality Assessment, (Junker et al.,

2004)

• PACT, the Performance Assessment for California

Teachers (PACT Consortium, 2012)

Fig. 2 The main issues

addressed
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• SCAN, the Systematic Classroom Analysis Notation

(Beeby, Burkhardt, & Caddy, 1980)

Although each of these schemes had its virtues, each

offered challenges with regard to our specific analytic goals.

To be more explicit, we had at the time certain criteria that

were tacit but that became more explicit as we worked on the

scheme. Ultimately, we wanted a mechanism for capturing

what takes place in mathematics classrooms that was

(a) workable in roughly twice real time; (b) focused in clear

ways on dimensions of classroom activities that were known

in the literature to be important, (c) relatively comprehensive,

in that the major categories of classroom actions noted in the

literature were represented; (d) relatively comprehensible, in

that the framework underlying the scheme cohered and was

comprehensible; and, of course, that (e) the scheme had the

requisite properties of reliability and validity. Although

Fig. 2 can be interpreted in correlational terms (do high

scores on classroom analyses correspond to high scores on

student performance measures?), we hoped for more—that,

ultimately, the (relatively few) dimensions of the analysis in

the classroom analysis scheme would also, in the long run,

provide a coherent and theoretically grounded basis for pro-

fessional development.1

Here is a description of some of the challenges we faced in

working with the schemes listed above2. Some, e.g., PLATO,

did not focus on mathematics; none focused on assessment.

Some, such as the Framework for Teaching, covered

numerous teacher behaviors, at different levels of grain size;

in looking at the rubrics we were unable to identify key

constructs amidst the classroom activities coded. Some, such

as the IQA, focused on one or more key constructs, such as

classroom discourse, but they were too narrow for our pur-

poses. We tried all of the schemes on tapes of what we per-

ceived to be excellent teaching. Ultimately, none of the

schemes jibed with our sense of what was central in good

algebra teaching (that is, they did not meet the criteria given

above). Things we saw the teachers doing, that we judged to

be important, were not reflected in the coding we did.

3 First attempts: deriving a coding scheme

from the research on decision making

As noted above, we had at our disposal an analytic

framework that focused on key factors in the teacher’s

decision-making: the teacher’s orientations (what does the

teacher think is important about the content, about class-

room interactions, about the students?), the teacher’s goals

for instruction, and the knowledge at the teacher’s disposal

for meeting those goals. We also had a mechanism, dis-

cussed above, for coding the lesson. The scheme had been

used for research purposes, where we had the luxury of

taking months to come to certainty about the codings we

assigned. But, the classes we had coded for research pur-

poses were extraordinarily complex. In contrast, most

classroom instruction is not nearly as complex—and the

goal of the current research was to do a quick parsing that

met the standards of inter-rater reliability rather than trying

to get every detail right. So, we tried to adapt the coding

scheme discussed above.

The attempt was disastrous. It was easy to parse lessons

into episodes and sub-episodes—for the most part, break

points in classroom activity structures are easy to observe.

But, the scheme had two fatal flaws. First, it called for a

great deal of inference and/or interviewing on our part, in

order to develop an understanding of the teacher’s goals

and orientations. Second, it was too teacher-focused—it

did not capture the students’ experiences adequately. For

example, Phil Daro, one of the members of the ATS

advisory board, has said that the most important predictor

of student learning may be that the number of times that

students get to say a second sentence in a row. (See also

Franke, Kazemi, & Battey, 2007; Franke & Webb, 2010;

Franke, Webb, Chan, Ing, Freund, & Battey, 2009.) This

kind of consideration was absent from the decision-making

scheme. We decided to abandon the research scheme as a

viable method for the relatively rapid coding of classroom

activities that we desired. Ultimately, as described in what

follows, various aspects of the research scheme—e.g., the

parsing of a lesson into episodes, and the documentation of

the results of their in-the-moment decision making

(grounded in their orientations, beliefs, and goals) became

parts of our current coding system. But, the need to focus

on activity structures for all of the classroom participants,

and to not engage in deep and extended analyses of what

the teachers knew, believed, and were trying to achieve,

mandated very significant changes in approach.

4 Second attempt: a potentially comprehensive

framework

The research group turned to a more straightforward

analysis. The idea was simple in outline. Consider a matrix

in which the columns represent desired student outcomes,

and the rows represent important aspects or types of

classroom interactions. We had three major student out-

comes, listed as follows:

1 A large study funded by the Gates Foundation, the Measures of

effective Teaching (MET) project (2012), did examine correlations

between student learning and performance on some of the measures

above.
2 This is not the place to provide an extensive critique of the extant

schemes, or a comparison of them. Such a critique will be provided in

(Algebra Teaching Study, 2013, in preparation).
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A. Access. How much ‘‘room’’ was there for all students

to engage mathematically?

B. Accountability. In what ways were students held to

high mathematical standards?

C. Productive dispositions. Did students develop appro-

priately productive mathematical dispositions and

habits of mind?

We identified four central points of focus for our

classroom analyses:

1. The mathematics

2. Opportunities for mathematics learning

3. The classroom community

4. The individual learner

This structure produced a straightforward summary

matrix for characterizing the learning environment. See

Fig. 3.

The approach in Fig. 3 offered two main challenges. First,

the underlying analytic superstructure was quite complex.

Each of the cells in the matrix is a summary cell—and the

details required to assign a summary score for that cell were

anything but simple. Each of the cells in Fig. 3 had a number

of contributory sub-dimensions; see Fig. 4.

Second, we had a series of observational codes that

contributed to scores. There were codes for teacher, stu-

dents, and task. For example, one of the 12 teacher codes

was ‘‘Teacher pushes for conceptual understanding’’; one

of the student codes was ‘‘Students question and evaluate

mathematical ideas, whether they come from the teacher or

from classmates’’; and one of the task codes was ‘‘Task

requires students to justify, conjecture, interpret.’’ A score

on any of these codes could contribute to numerous scores

in the three-by-four matrices in Figs. 3 and 4.

This scheme, while highlighting many things we thought

were important, was very unwieldy. Despite the seeming

simplicity of Fig. 3, the list of codes was somewhat ad hoc

and the actual mechanics of coding lessons almost

impossible.

5 Subsequent attempts: tries at simplicity, interwoven

with evolving complexity

For nearly 2 years the research group tried, in various

ways, to move the scheme forward and to make it work-

able. Until we arrive at the penultimate scheme, extensive

detail is not important. My purpose here is to highlight the

challenges of doing such work, and the many ways in

which good ideas turn out to be difficult to implement.

Illustrative detail is given where warranted.

5.1 Levels of mathematical activity

In reviewing extant schemes, we noted that some focused,

either in whole or in part, on general patterns of classroom

activity; some focused on mathematical activity. We tried a

3-level analytic scheme: general activity (how well orga-

nized and managed is the classroom, how interactive; how

often do students get to speak, and in what ways?); math-

ematical activity (what are the sociomathematical norms in

the classroom; what are the standards of explanation?) and

specific algebraic activity (what supports are there for

making sense of complex contextual word problems?) This

proved very hard to organize and manage; we had three

simultaneous coding schemes at the three levels of activity

description.

Access
(what the teacher gives/allows)

Accountability
(what the teacher expects/demands)

Productive Dispositions
(what the teacher receives from 

students)
)sedoc(snoisnemiD)sedoc(snoisnemiD)sedoc(snoisnemiDdnartS

Mathematics
Students are able to experience the 
vibrancy and power of the domain of 
mathematics

Mathematical exploration and 
discussion should be accurate. 
Reasoning and justification should be 
tied to mathematics.

Students construct mathematics, 
attempting to discover rather than 
just receive.

Mathematics Learning

Students are given a chance to learn 
mathematics. This requires making 
making mathematics learning practices 
explicit and accessible.

Students are expected to engage 
productively in the mathematics 
learning process, sustain efforts, and 
contribute to finding solutions.

Students are interested in learning 
mathematics.

Classroom Community

No students are marginalized in the 
classroom community. All students 
have a chance to engage and 
participate.

Students have an obligation to their 
teacher and peers to be respectful 
and helpful. Students are not just 
participants but leaders of the 
classroom community.

Students contribute and participate 
as a community of mathematics 
practicioners.

Individual Learner
The classroom respects the 
uniqueness of each individual student, 
and gives appropriate affordances.

Students have an obligation to 
themselves to learn mathematics, 
and productively engage the subject 
matter.

Students sustain efforts as 
learners. Students take risks and 
believe that they can succeed.

Fig. 3 Central features of our second attempt
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5.2 Activity Structures

In an attempt to rein in complexity, we returned to the idea of

‘‘episodes,’’ periods of time during which the class is engaged

in one relatively coherent type of classroom activity. This

time, when we coded, we would parse a lesson into episodes,

classify the type of episode, and then ask relevant questions

about each episode. The activity types were:

• Task introduction

• Mathematical discussion

• Small group work

• Independent student work

• Post-Lesson analysis

For each of these activity structures we had codes for

relevant activities. Figure 5 provides the codings for tea-

cher and student behavior during mathematical discussions.

This version of the scheme, although more easy to code

chronologically than earlier versions (we could take notes

and identify episodes, then code behaviors within episodes)

was still problematic. It had a large number of codes, which

required simultaneous coding (e.g., for one classroom

discussion, every one of the seven teacher behaviors and

three student behaviors needed to be coded). It produced a

series of coding values for different types of interactions,

but there was no clear theoretical rationale for combining

those numbers. Assigning some code values required a

large degree of inference and value judgment. Consider for

example teacher behaviors 4 and 5, assessing whole class

understanding and pacing class discussions. Much ongoing

teacher assessment is unspoken. Thus, it may be difficult if

not impossible to know to what degree a teacher is

assessing student understanding and modifying the pace of

class in response to what he or she sees in student work or

hears students say. And, how does one know whether the

pacing or the examples are ‘‘appropriate’’ for most stu-

dents? Some cases may be clear, but some may be subtle;

some may depend on a teacher’s goals or style, but be

effective. Thus, although this version had some desirable

elements, it was not yet workable.

5.3 Attempting to use the didactic triangle to provide

structure

As the number of codes had increased, the scheme became

increasingly unworkable. The idea of activity structures

made sense, but coding multiple dimensions within any

activity structure was a challenge. Thus we moved toward

more fine-grained activity structures, with the expectation

that coding within each activity structure would be more

straightforward. At one point we had fifteen activity

structures of relevance, some of which were as follows:

• Teacher leads whole class discussion

• Teacher prepares students for a new task

• Students ask a mathematical question

• Navigating a task’s language or context

• Summarizing the math in a task

snoitisopsiDevitcudorPytilibatnuoccAsseccA
)sedoc(snoisnemiD)sedoc(snoisnemiD)sedoc(snoisnemiDdnartS

Mathematics a) the teacher presents tasks in a way that demand 
rich mathematical engagement
b) tasks provide opportunities to engage higher-level
mathematical thinking

a) teacher presses for accuracy
b) teacher carefully and accurately presents 
mathematical ideas
c) multiple representations are required, used, and 
connected by teacher, students, and task 
d) teacher and students use academic language
c) discussion among students is math-focused

a) students construct mathematics rather 
than wait to receive it
b) students generate/explain ideas
c) students question, challenge, evaluate 
ideas

Mathematics Learning a) teacher is explicit about what to do on a given 
problem
b) teacher is explicit about how to use formal math 
language
c) teacher is explicit about how to reason 
mathematically
d) students facilitate discussions
e) students manage logistics
f) students set the agenda/have choice in activities

a) teacher expects students to be able to learn 
mathematics
b) teacher expect students to persist in mathematics 
learning
c) teacher asks probing questions/elicits reasoning and 
justification 
e) teacher checks for understanding and provides 
feedback during instruction

a) students are excited, curious, or 
interested to engage math
b) students seek multiple solutions to a 
single problem
c) students don't just seek solutions but to 
understand why they work

Classroom Community a) teacher provides feedback
b) teacher relates and connects student ideas to one
another
c) teacher revoices/marks student contributions
d) teacher positions students as equals
e) students give and receive feedback from other 
students

a) authority is distributed between students and 
teacher
b) authority is distributed between existing and new 
ideas
c) students question and evaluate each other and 
teacher 

a) students work collaboratively
b) students respect one another's ideas
c) students accept feedback from other 
students/teacher
d) students acknowledge others' 
contributions

Individual Learner a) teacher permits use of non-dominant language
b) teacher provides students time to work 
independently 
c) teacher builds on students' prior knowledge, 
connects mathematical ideas 
d) students engage the mathematics on their own 
level
e) tasks have multiple entry points
f) problem contexts respect students' cultural 
backgrounds/prior knowledge

a) students have a role as mathematical authorities
b) students participate in classroom activities

a) teacher positions students as competent
b) teacher positions students as *capable* 
of doing the math - from Ball's MQI and 
Cohen's complex instruction
c) students take risks
a) students work hard
b) students sustain efforts to reach learning 
goals (they don't give up after 2 minutes)

Fig. 4 Sub-dimensions of our second attempt
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For each of these different activity structures, we asked

three sets of questions drawn from the didactic triangle:

What can we say about the relationships between the tea-

cher and students, between teacher and the mathematics,

and the students and the mathematics? But sometimes other

considerations were relevant, for example how well the

task supported multiple representations or student argu-

mentation. The result was a large matrix that turned out to

be only semi-coherent—see Fig. 6 for the first four activity

structures (situations) examined in the scheme.

This time the semi-coherence turned out to be produc-

tive. It was clear that almost everything we thought was of

importance was somewhere in the giant fifteen-by-six

matrix of which Fig. 6 is a part. But, with the fifteen

activity structures represented in rows A through O, and

between 2 and 6 aspects of the lesson coded for each row,

something had to be done. We had reached completeness

of coverage; but we had lost comprehensibility. The chal-

lenge was then to distill the content in the matrix, in ways

that cohered logically and that fit with the literature.

The next step was simple, in concept. What if one took

each non-empty cell in the matrix and asked: What fun-

damental issue from the literature does this cell address?

The idea was to cluster similar cells—to create what are, in

essence, mathematical equivalence classes—and to identify

those equivalence classes as the fundamental dimensions of

analysis. Consider row A of Fig. 7, for example. The first

cell, ‘‘deciding who gets called on,’’ is fundamentally about

equity and access. In an equitable class, all students have

the opportunity to contribute, and the teacher has a range

of mechanisms for encouraging and supporting such

contributions. The second and third cells are concerned

with student agency and authority. A major issue is, when

if ever do students get to develop a mathematical voice?

That is, when do they get to propose ideas and answers,

defend them, and become recognized as producers of

mathematics themselves? Equity and access and agency

and authority are two of the fundamental dimensions that

emerged from our analyses. Broadly speaking, the goal

was to classify each cell in the matrix as belonging to one

of a relatively small number of categories that (a) had

internal coherence, (b) represented an important vector in

the literature, and (c) could be clearly distinguished from

the others. These categories would become the dimen-

sions for analysis.

6 The current version of the TRU Math (teaching

for robust understanding of mathematics) scheme

In this section I present our current analytic scheme and the

rationale in the literature for it. As noted above, the origins

of this version of the scheme lay in looking for equivalence

classes of important classroom activities. As I undertook

5:hgiH3:egarevA1:woLnoitpircseD
Teacher Behavior

1 Richness of Mathematics If underlying mathematics concepts are 
engaged, the engagement is superficial.

Underlying mathematics concepts are 
engaged, but not in ways that make 
connections to other mathematical ideas.

Underlying concepts are central to the 
discussion. The emphasis is on 
understanding why and making connections 
between mathematical ideas.

2
Teacher's Mathematical 

Integrity
Teacher's mathematics contains significant 
errors.

Teacher's mathematics is generally correct 
but does not help students focus on key 
ideas.

Teacher's mathematics is generally correct 
and helps students focus on key ideas.

3
Soliciting Student 

Reasoning

Teacher does not solicit student ideas, or 
only asks for answers, not reasoning or 
justification.

Teacher asks students to provide some 
reasoning and explanation about 
mathematical ideas, but student participation 
is mostly limited to student-teacher 
interactions.

Teacher presses students for reasoning and 
justification of ideas/solutions, building the 
discussion using student ideas, and 
pressing students to question/analyze each 
other's reasoning.  

4
Assessing Understanding  

(Whole Class)
Teacher does not assess student 
understanding or only does so superficially.

Teacher makes some attempt to check 
whether students are following key ideas of 
the discussion, but fails to productively use 
that information.

Teacher makes sure students are following 
the discussion and assesses their 
understanding of important mathematical 
ideas (by using student work and asking 
questions). The flow of the 
lesson/discussion is modified as appropriate 
based on these assessments.

5 Pacing of Discussion

Teacher provides an excessive amount of 
time or an insufficient amount of time for 
students to engage with 
questions/concepts (e.g. teacher answers 
own questions or always calls on first 
hand).

The pace of the discussion is 
engaging/accessible for most students, but 
the teacher spends too little time on some 
important topics or too much time on less 
important topics.

The pace of the discussion is 
engaging/accessible for most students. 

6
Opportunities for Deeper 

Mathematical 
Conversations

Teacher misses opportunities for deeper 
mathematical conversations.

Teacher leverages opportunities for deeper, 
conceptual conversations, but often resolves 
the mathematics for students.

Teacher opens deeper, conceptual 
conversations, and persists in having 
students' resolve mathematical questions as 
much as possible.

7
Addressing/Engaging 

Misconceptions

Teacher leaves misconceptions 
unaddressed except when they are treated 
as "wrong answers" and corrected.

Teacher addresses some misconceptions but 
either (a) major misconceptions are left 
unaddressed or (b) the "fixes" are somewhat 
superficial.

Teacher engages misconceptions, probing 
for misunderstandings and building on 
partial understandings. 

Student Behavior

1 Participation There is little student participation.
Participation is limited to a subgroup of
students.

Many students participate.

2 Risks Students don't share ideas.
Students share ideas when they are mostly 
certain they are correct

Students take risks in sharing their ideas

3 Student Explanations Students don't explain their ideas or 
solution processes.

Students' explanations consist of what they 
did/think but not why.

Students explain why their solutions or ideas 
work, as appropriate.

Mathematical Discussion (MD)
Level of Emphasis

Fig. 5 Mathematical discussions coding detail
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this work in earnest, I came to a deeper understanding of

the kind of structure that I was seeking. The following

analogy may be helpful for understanding what the

framework embodies.

The product of my research on problem solving

(Schoenfeld, 1985, 1992) was a framework for the analysis

of the success or failure of problem solving attempts. The

framework focused on four categories of behavior:

• the knowledge base

• problem solving strategies

• metacognition, specifically monitoring and self-

regulation

• belief systems, and the practices that gave rise to them.

Perhaps most important, I claimed that the four cate-

gories were both necessary and sufficient for the analysis of

problem solving attempts, in the following sense. They

were necessary in that one had to consider all of them when

evaluating a problem solving attempt—the cause of suc-

cess or failure might reside within the knowledge base,

access to strategies, metacognition or beliefs, and one

might miss the cause unless all were examined. They were

sufficient in the sense that the cause of success or failure

would reside in one of those categories; no other dimen-

sions of problem solving need be examined. In addition,

each of the categories cohered, and there was relatively

little overlap between categories.3

Fig. 6 Part of the didactic frame

3 It is impossible to separate the categories completely – a strategy is

part of one’s knowledge base, for example, and some metacognitive

acts are strategic. However, there are better and worse decomposi-

tions. The idea is to aim for a ‘‘nearly decomposable system,’’ a

decomposition in which the parts cohere internally and have minimal

overlap. One might, for example, divide the human body into a series

of parts: arms, legs, torso, head – but that makes no sense

physiologically, in terms of function. On the other hand, a decom-

position into respiratory system, circulatory system, muscular system,

skeletal system, and so on, does make sense. The systems themselves

cohere, and, although there is overlap and interaction, e.g., between

the circulatory and respiratory systems, it makes sense to talk of them

(almost) independently.
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My goal for the TRU Math scheme is for the equiva-

lence classes that emerge from the analyses described in

the previous section to have similar properties—that there

would be a relatively small number of categories of

classroom activities for analysis; that they would be nec-

essary, in that to ignore any of them would run the risk of

missing an essential component of instruction; and that

they would be sufficient, in that no other categories would

be necessary for analysis. Although it is too early in the

process to be confident, I think that there is a good chance

that the dimensions discussed below have those properties.

I begin by introducing the five dimensions. These are the

columns of the TRU Math scheme, which is in the form of

a matrix. Having described the fundamental dimensions of

the scheme, I provide an outline of the analytic structure

of the matrix. The four rows of the matrix are a range of

classroom activity structures. The ‘‘basic’’ matrix, of the

form {activity structures} 9 {dimensions}, provides the

core analytic structure of our general approach. As dis-

cussed below, this core suffices as a general classroom tool;

but more detail is needed for close examination of any

particular topic or dimension (e.g., the specifics of algebra

learning, or assessment).

6.1 Dimensions of TRU Math

The dimensions are as follows.

1. Mathematical Focus, Coherence and Accuracy. To

what extent is the mathematics discussed clear, correct,

and well justified (tied to conceptual underpinnings)?

2. Cognitive Demand. To what extent do classroom

interactions create and maintain an environment of

intellectual challenge?

3. Access. To what extent do classroom activity struc-

tures invite and support active engagement from the

diverse range of students in the classroom?

4. Agency, Authority and Accountability. To what extent

do students have the opportunity to make mathematical

conjectures, explanations and arguments, developing

‘‘voice’’ (agency and authority) while adhering to

mathematical norms (accountability)?

5. Uses of Assessment. To what extent is student reason-

ing elicited, challenged, and refined?

Dimension 1: Mathematical Focus, Coherence and

Accuracy. This dimension pertains to the richness and

centrality of the mathematics as it plays out in the class-

room. In the US context, there is a history of major cur-

riculum documents. The US National Council of Teachers

of Mathematics issued two sets of Standards, in (1989) and

(2000). These were voluntary standards, in the sense that

each of the 50 individual states in the United States was

free to adopt its own standards and assessments—and did.

More recently, the Common Core State Standards Initiative

issued a consensus set of mathematics Standards (CCSSI-M,

2010), which have been adopted by 45 states. A major

feature of CCSSI-M is a focus on mathematical practices,

for example making sense of problems and persevering in

solving them, reasoning abstractly and quantitatively,

constructing and critiquing viable arguments, modeling

with mathematics, and using appropriate tools strategically.

Scores along the mathematics dimension reflect the

opportunities for students to engage with important math-

ematical content and practices, in a way that is focused and

coherent, tied to conceptual underpinnings (in contrast, for

example, to the rote memorization of procedures).

Dimension 2: Cognitive Demand. In a series of major

articles, Stein, Henningsen, and colleagues (Henningsen &

Stein, 1997; Stein, Engle, Smith, Hughes, 2008; Stein,

Grover, & Henningsen, 1996) explored the role of class-

room discourse in either maintaining or diluting the

mathematical richness of tasks with which students engage.

Henningsen & Stein (1997) document five factors that

appear to be ‘‘prime influences associated with maintaining

student engagement at the level of doing mathematics:’’

mathematically rich tasks, ‘‘teacher scaffolding that

enables students to grapple with the task without sacrificing

or diluting the important mathematics in it,’’ adequate time,

modeling of high quality performance, and a ‘‘sustained

press for explanation and meaning.’’ Henningsen and Stein

(1997) note three major types of decline from powerful

engagement as well: (1) decline into using procedures

without connection to concepts, meaning, and under-

standing, (2) decline into unsystematic exploration and lack

of sustained progress in developing meaning or under-

standing, and (3) decline into activities with little or no

mathematical substance. Scores along this dimension

reflect whether the mathematics has been ‘‘proceduralized’’

to the point where there is little true mathematical

engagement, or whether students get to engage in ‘‘pro-

ductive struggle’’ as they work on the mathematics.

Dimension 3: Access and Equity. Access to powerful

and meaningful mathematics is important for all students

(Moses, 2001; Schoenfeld, 2002). There is a long history of

differential achievement in mathematics by students from

varied racial, ethnic, and economic backgrounds (Secada,

1992), which, it has been argued, can be tied to differential

access to opportunities to learn (Oakes, Joseph, & Muir,

2001). While one obvious source of this differential access

is tracking, which is outside of the scope of a classroom

observation scheme, another is the pattern of discourse

within classrooms. Who has the opportunity to engage

with mathematics in ways that are likely to lead to

learning? Do all students have opportunities to discuss

mathematical ideas with some frequency (American

Association of University Women, 1992)? Are there
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multiple opportunities to develop and display competence

for each student (Cohen 1994), and for students to build

understanding based on the knowledge they bring with

them into the classroom (González, Andrade, Civil, &

Moll, 2001; Zevenbergen, 2000)? This dimension of our

observation scheme attempts to address these questions to

the extent that it is possible to do so in discrete classroom

observations.

Dimension 4: Agency, Authority and Accountability.

Mathematics learning is active, not passive. In a productive

learning environment students have the opportunity to see

themselves as doers of mathematics—to develop a sense of

agency—and to act accordingly (Engle, 2011; Engle &

Conant, 2002; Schoenfeld, in press). Agency, of course, is

part of one’s mathematical identity and disposition. The

roots of ‘‘authority’’ reside in the word ‘‘author’’: the idea

is that students create, or author, mathematical ideas and

their justifications (thus becoming authorities). At the same

time, students are not free to invent without constraint: they

make conjectures, but are then multiply accountable—to

the discipline, to the teacher, and to other students.

The discourse structures supported by the teacher can

foster or inhibit agency, authority, and accountability. The

Institute for Research on Learning (IRL, 2011) argues that

the norms of ‘‘Accountable Talk’’ play facilitative roles in

developing student agency and authority. The following

teacher moves can be productive: revoicing (the teacher

restates something a student said, attributing it to the stu-

dent), asking students to restate someone else’s reasoning,

asking students to apply their own reasoning to someone

else’s reasoning, prompting students for further participa-

tion, asking students to explicate their reasoning, and

challenging students’ reasoning by asking for counterex-

amples, etc. (Resnick, O’Connor, and Michaels, 2007).

Scores along this dimension reflect whether the classroom

environment provides students with opportunities to

develop agency and authority, subject to the appropriate

mathematical norms (accountability).

Dimension 5: Uses of Assessment. In contrast to com-

monplace practices of classroom assessment being separate

from instruction and serving a predominately evaluative

function (Shepard, 2000), major policy documents in math

education research assert that assessment should become

an integral component of instruction (NCTM, 1995; NRC,

2001; NRC, 2005). Black and Wiliam’s (1998) widely

cited review of the research literature on formative

assessment documents substantial learning gains that result

from teachers’ use of formative assessment practices.

When assessment becomes an integral and ongoing part of

the learning process, as opposed to an interruption of

classroom activities, students’ thinking takes on a more

central role in determining the direction and shape of

classroom activities (Shepard, 2000; Shafer & Romberg,

1999; de Lange, 1999). In consequence, teachers’ instruc-

tion can more adeptly support and enhance students’

individual and collective reasoning (Webb & Romberg,

1992). Additionally, through self- and peer-assessments,

students can be positioned through the construction of

particular classroom norms to become more reflective

regarding their own learning processes (Shepard, 2000). As

noted in the introduction to this article, the Mathematics

Assessment Project (http://map.mathshell.org/materials/

index.php) is constructing 100 formative assessment les-

sons, whose goal it is to support teachers in their ability to

elicit, challenge, and refine student thinking. Scores along

this dimension reflect the degree to which assessment is

used productively in the classroom.

6.2 Activity Structures in TRU Math

As in earlier versions of our scheme, the horizontal rows

of our coding matrix represent classroom activity struc-

tures. The idea behind coding a lesson is that the lesson is

parsed sequentially into a series of episodes or activity

structures that are relatively short (less than five minutes)

and phenomenologically coherent. In constructing the set

of activity structures, we strove for the following prop-

erties. We wanted the list to be relatively short, but to

contain the activities that are likely to be consequential in

terms of the five dimensions. If possible, we want the list

of activity structures to be disjoint (no more than one

activity structure per episode), so that each episode only

needs to be coded once. Although this list is still subject

to revision, our current set of activity structures is the

following:

• Whole Class Activities, including as subsets Topic

Launch, Teacher Exposition, and Whole Class

Discussion;

• Small Group Work; and

• Student Presentations.

We also note, but do not typically code, periods of

• Individual Student Work (which is noted, but not

typically coded)

For each of the first three activity structures, (Whole

Class, Small Group, and Student Presentations) the class-

room episode is rated on a scale of 1–3 for each dimension.

Ultimately, the scores are aggregated over the lesson.4

4 Episodes are between 45 s and 5 min. Our scoring guide provides

rules for carving longer periods of activity (say, 15 min of whole class

discussion) into episodes that are no longer than 5 min. Currently we

are exploring a number of different ways of aggregating data across

episodes.
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Figure 7 presents the outline of the current version of

the core scheme. In the full version, there are rubrics for

assigning scores of 1, 2, or 3 for each episode type, for each

dimension. (That is, there are 20 separate 3-point rubrics

for assigning scores to each cell in the 4-by-5 matrix.) The

top part of Fig. 7 represents the summary rubrics for each

dimension, and the bottom part shows the dimensions of

the 4-by-5 matrix.

This, of course, is a skeletal scoring summary—there is

a substantial amount of supporting detail. As seen in the

bottom section of Fig. 7, each of the cells representing

whole class activities, small group work, and student pre-

sentations is scored on a 3-point rubric.5 To pick just one as

an example, the student presentations rubric under ‘‘uses of

assessment’’ (row 3, column 5) is scored as follows.

A score of 1 indicates that ‘‘when errors are made, teacher

does not engage presenter or other students in discussion;

OR, actions are simply corrective.’’ A score of 2 indicates

that ‘‘Teacher probes presenter/class for reasoning and uses

this to elaborate on correct ways to do the mathematics.’’

A score of 3 indicates ‘‘Teacher comments and questions

support presenter and other students in airing and vetting

the ideas behind the work they produce.’’ These statements

are in themselves brief summaries of the gist of an episode.

We are compiling an extensive scoring guide, which pro-

vides illustrative examples to indicate what scores are

given under what circumstances.

I referred to the 4-by-5 matrix above as the ‘‘core

scheme,’’ in that it is mathematically general. As given, the

4-by-5 matrix provides general detail that, we think, will

correlate well with student outcomes in any mathematics

course. However, a more fine-grained lens is necessary for

analysis in any particular mathematics content area. As

noted above, our current work is in algebra. Hence a part of

the scheme is focused on teaching for robust understanding

of algebra word problems. In addition to dimensions 1

though 5, classroom activities for the algebra work are also

coded for how well instruction supports:

• Reading and interpreting text, and understanding the

contexts described in problem statements.

• Identifying salient quantities in a problem and articu-

lating relationships between them

• Generating representations of relationships between

quantities

• Interpreting and making connections between

representations

• Executing calculations and procedures with precision

• Checking plausibility of results

• Opportunities for Student Explanations

• Teacher instruction about Explanations

• Student Explanations and Justifications

This addition of an ‘‘algebra word problem module’’

makes the scheme algebra word problem specific. One could

easily replace this algebra module with one for geometry, or

calculus, or other content. Similarly, researchers with spe-

cific interests in cognitive demand, access, agency, and

assessment could expand the scheme (either by adding rub-

rics, as above, or by specifying more activity structures) to

flesh out the scheme to the desired level of detail. Thus, for a

close look at assessment one might delineate as separate

episodes segments of student work where students are putt-

ing together posters for presentation, demonstrating their

current work on mini-whiteboards, etc.

7 Discussion

As noted in the introduction, my first major purpose in

writing this chapter was to lay out the complexities of

constructing a classroom analysis scheme for empirical

use, even when a general theory regarding teacher deci-

sion-making is available. It took my research group 3 years

of concentrated effort to create the analytical scheme

summarized in Fig. 7, even though we had at our disposal a

robust analytic framework for characterizing teacher

decision making. I have summarized some of the twists and

turns in the development of the scheme, because I think it

is important to do so. In the literature we often find pol-

ished gems, whose contorted history has been obscured.

There is, I believe, much to be gained from examining the

ways in which our understandings develop.

My second major purpose was to present the scheme

itself. All I have at this point, as I had more than 25 years

ago with regard to problem solving, is an intuitive sense

that the dimensions highlighted in the scheme have the

potential to be necessary and sufficient for the analysis of

effective classroom instruction. There is no doubt about

their importance, in general: each of the dimensions has a

solid grounding in the literature. How important they will

turn out to be, individually or in combination, remains to be

seen. If they do hold up analytically, then there is a next set

of challenges. On the one hand, my work on teacher

decision making indicates that teachers’ resources (espe-

cially knowledge), goals, and orientations (especially

beliefs about students and mathematics) are highly conse-

quential. On the other hand, this work suggests the

dimensions of powerful classroom environments. The

challenge for professional development thus becomes, how

can we create contexts for professional growth, in which

teachers’ knowledge and resources, goals, and orientations

can evolve productively in ways that enable the teachers to

5 In most cases, the rubrics for different episodes are different, taking

into account the specifics of that kind of episode. In a small number of

cases, the rubrics for a particular dimension are identical.
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craft instructional environments that score well on the

dimensions of the scheme indicated in Fig. 7?

Third, the two theoretical frameworks described in the

previous paragraph and our intentions for professional

development provide an opportunity for me to reflect on

the roles of various theoretical constructs and research

methods in exploring productive classroom behavior. Here

I offer three observations:

1. Depending on one’s focus, different constructs may

appear to play more or less central roles.

2. No matter what the claim concerning teaching and

learning, a dialectic with empirical observations is

essential.

3. Getting at ‘‘what counts’’ requires multiple lenses,

methods, and perspectives.

7.1 Observation 1: the varying salience of fundamental

constructs

Consider the three main constructs in the theory of teach-

ers’ decision making (Schoenfeld, 2010): knowledge and

resources, goals, and orientations. The goal of that body of

research was to explain teachers’ in-the-moment decision

making—to be able to explain, on theoretical grounds, how

and why teachers made each decision they did while in the

midst of teaching. This theoretical framing required a

micro-analytic approach, the questions being, what

knowledge does the teacher have potentially at his or her

disposal, and for what reasons does he or she make par-

ticular choices? These three constructs—knowledge and

resources, goals, and orientations—play more of a back-

ground role in the research on powerful classroom envi-

ronments that has been the focus of this article. The central

question for this kind of classroom research is, what are the

key dimensions of the learning environment, as experi-

enced by the students? It goes without saying that the

teacher’s decision making plays a fundamental role in

shaping the environment: a teacher cannot teach content or

use pedagogical techniques of which he or she is unaware,

and how much of a priority the teacher assigns to (for

example) mathematical sense making or giving all students

an opportunity to participate meaningfully in classroom

activities is vitally important. Yet, what matters in the

classroom are the activity structures as the students expe-

rience them. Hence, the teacher’s knowledge, goals, and

orientations are ‘‘backgrounded’’ in this context, as class-

room activity structures are highlighted.

Interestingly, these constructs are likely to be fore-

grounded once again when one turns to professional

development. The goals of professional development are to

enhance the learning environment, but the means of

achieving that improvement lie in the enhancement of the

teacher’s capacity to craft a more powerful learning envi-

ronment. Teacher knowledge is obviously important, as are

material resources; a teacher cannot implement what he or

she does not know or does not have the resources for.

However, effective professional development will also

have to target teachers’ beliefs and goals. If these remain

unchanged, new knowledge may not be put to use.

7.2 Observation 2: the need for a dialectic

between theory and empirical observation

I am convinced that neither theoretical nor empirical

research can thrive without the other. Thus, over the course

of my career, theoretical ideas have been tested in the

crucible of the real world, and empirical experiences have

given rise to more nuanced theoretical ideas. This was the

case in my problem solving work, where a decade of

teaching my problem solving courses served both as the

‘‘reality test’’ for my theoretical ideas and an inspiration for

them. In studying teacher decision making, it is one thing

to hypothesize the factors that shape teachers’ choices; it is

quite something else to try to model teachers’ classroom

behavior. In the work described in this article, the constant

testing of our ideas against real data (videotapes of class-

room teaching), combined with the need for theoretical

clarity, is what produced ongoing refinements of our ana-

lytic scheme.

7.3 Observation 3: the need for multiple lenses,

methods, and perspectives

This observation might be seen as a corollary to the first

two, but it is worth highlighting on its own. Two illustra-

tive examples are the bodies of research into teacher

knowledge and teacher beliefs. From my perspective,

inventories of teacher knowledge and/or teacher beliefs, on

their own, can quickly become sterile. The question is not

‘‘what does a teacher know’’ or ‘‘what does a teacher say he

or she believes’’ but, ‘‘how do a teacher’s knowledge and

beliefs play out in the classroom?’’ There is, for example, a

corpus of research using questionnaires that examines

teachers’ beliefs (see Schraw & Olafson, 2002). However,

what teachers say they believe and what they actually do in

the classroom can be very different things (see, e.g., Cohen,

1990), and data from the questionnaires alone can be

contradictory (as in Schraw & Olafson, 2002). Hence some

form of triangulation is essential. An example of such tri-

angulation is given in Swan (2006), where data from tea-

cher questionnaires, student questionnaires, and

independent observers’ classroom observations are all

juxtaposed and shown to be consistent. When such trian-

gulation is done, one can have much greater confidence in

the results.
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I am convinced that research that lives in the tension

between the theoretical and the empirical, and that employs

multiple tools and perspectives, will ultimately enhance

both theory and practice. I hope the example given in this

paper indicates the ways in which theoretical and prag-

matic lenses can be trained profitably on the same set of

phenomena.

Acknowledgments This work was supported by the National Sci-

ence Foundation (The Algebra Teaching Study, Grant DRL-

0909815), to Alan Schoenfeld and Robert Floden, and the Bill and

Melinda Gates Foundation (The Mathematics Assessment Project,

Grant OPP53342). The work here truly represents a community effort,

with significant contributions from Evra Baldinger, Danielle

Champney, Aldo Dalla Piazza, Vinci Daro, Fadi El Chidiac, Christian

Fischer, Denny Gillingham, Duanghathai Katwibun, Hee-jeong Kim,

Mariana Levin, Nicole Louie, Sarah Nix, Dan Reinholz, Kim Sea-

shore, Niral Shah, and Likun Sun from the University of California at

Berkeley, and Rachel Ayieko, Adrienne Hu, Jerilynn Lepak, and

Jamie Wernet from Michigan State University.

References

Algebra Teaching Study (2013, in preparation). Beyond the numbers:
What really counts in classroom evaluation schemes? Berkeley,

CA, and East Lansing, MI: University of California and

Michigan State University, Algebra Teaching Study.

American Association of University Women. (1992). How schools
shortchange girls. Washington, DC: AAUW and NEA.

Beeby, T., Burkhardt, H., & Caddy, R. (1980). SCAN: Systematic
classroom analysis notation for mathematics lessons. Notting-

ham: England Shell Centre for Mathematics Education.

Black, P., & Wiliam, D. (1998). Assessment and classroom learning.

Assessment in Education, 5(1), 7–74.

Cohen, D. (1990). A revolution in one classroom: The case of Mrs

Oublier. EducationEvaluation and Policy Analysis, 12(3), 311–329.

Cohen, E. G. (1994). Designing groupwork: Strategies for heteroge-
neous classrooms (Revised ed.). New York: Teachers College

Press.

Common Core State Standards Initiative (2010). Common core state
standards for mathematics. Downloaded June 4, 2010 from

http://www.corestandards.org/the-standards.

PACT Consortium (2012) Performance Assessment for California

Teachers. (2012) A brief overview of the PACT assessment
system. Downloaded April 1, 2012, from http://www.pacttpa.

org/_main/hub.php?pageName=Home.

Danielson, C. (2011) The framework for teaching evaluation instru-
ment, 2011 Edition. Downloaded April 1, 2012, from http://

www.danielsongroup.org/article.aspx?page=FfTEvaluationIn

strument.

de Lange, J. (1999). A framework for classroom assessment in
mathematics (Unpublished manuscript). Madison, WI: National

Center for Improving Student Learning and Achievement in

Mathematics and Science, Assessment Study Group.

Engle, R. A. (2011). The productive disciplinary engagement

framework: Origins, key concepts and developments. In D.

Y. Dai (Ed.), Design research on learning and thinking in
educational settings: Enhancing intellectual growth and func-
tioning (pp. 161–200). London: Taylor & Francis.

Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering

productive disciplinary engagement: Explaining an emergent

argument in a community of learners classroom. Cognition and
Instruction, 20(4), 399–483.

Franke, M. L., Kazemi, E., & Battey, D. (2007). Understanding

teaching and classroom practice in mathematics. In F. K. Lester

(Ed.), Second handbook of research on mathematics teaching
and learning: A project of the national council of teachers of
mathematics (Vol. 1, pp. 225–256). Charlotte, NC: Information

Age Publishing.

Franke, M., & Webb, N. (2010). Supporting student explanations:
Variability in teacher practice across classrooms. Manuscript in

preparation. Available from authors, University of California,

Los Angeles.

Franke, M., Webb, N., Chan, A., Ing, M., Freund, D., & Battey, D.

(2009). Teacher questioning to elicit students’ mathematical

thinking in elementary school classrooms. Journal of Teacher
Education, 60, 380–392.
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