Shelves
This problem gives you the chance to:
• solve problems in a spatial context
• identify and distinguish the four point graphs related to this situation

Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.

 a. How many planks of wood does he need? 5

 b. How many bricks does he need? 30

 c. How high will the shelves be? 5 inches high

 d. How much will the bookcase cost? $12.50
The diagram below shows graphs with the following descriptions:

Description One: The cost of the bookcase against the number of shelves.
Description Two: The number of bricks against the number of shelves.
Description Three: The height of the bookcase against the number of shelves.
Description Four: The width of the bookcase against the number of shelves.

The equations of the graphs are:

\[y = 48, \quad y = 10x, \quad y = 6x, \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>(y = 10x)</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>(y = 6x)</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>(y = 4 \times \text{other})</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>(y = 2.5 \times \text{other})</td>
</tr>
</tbody>
</table>
Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.
 a. How many planks of wood does he need? 5
 b. How many bricks does he need? 30
 c. How high will the shelves be? 9 in
 d. How much will the bookcase cost? $12.50
The diagram below shows graphs with the following descriptions:

Description One: The cost of the bookcase against the number of shelves.
Description Two: The number of bricks against the number of shelves.
Description Three: The height of the bookcase against the number of shelves.
Description Four: The width of the bookcase against the number of shelves.

The equations of the graphs are

\[y = 48, \quad y = 10x, \quad y = 6x, \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>(y = 6x)</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>(y = 10x)</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>(y = 48)</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>(y = 2.5x)</td>
</tr>
</tbody>
</table>
Shelves

This problem gives you the chance to:
- solve problems in a spatial context
- identify and distinguish the four point graphs related to this situation

Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.
 b. How many bricks does he need? [36]
 c. How high will the shelves be? [5 ft.]
 d. How much will the bookcase cost? [$15]
The diagram below shows graphs with the following descriptions:

Description One: The cost of the bookcase against the number of shelves.

Description Three: The height of the bookcase against the number of shelves.

Description Four: The width of the bookcase against the number of shelves.

The equations of the graphs are:

\[y = 48, \quad y = 10x, \quad y = 6x, \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>(y = 10x)</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>(y = 6x)</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>(y = 4.8)</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>(y = 2.5x)</td>
</tr>
</tbody>
</table>
Shelves

This problem gives you the chance to:
• solve problems in a spatial context
• identify and distinguish the four point graphs related to this situation

Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.
 a. How many planks of wood does he need? __5__
 b. How many bricks does he need? __30__
 c. How high will the shelves be? __50 in.__
 d. How much will the bookcase cost? __$12.50__
The diagram below shows graphs with the following descriptions:

Description One: The cost of the bookcase against the number of shelves.
Description Two: The number of bricks against the number of shelves.
Description Three: The height of the bookcase against the number of shelves.
Description Four: The width of the bookcase against the number of shelves.

The equations of the graphs are

\[y = 48, \quad y = 10x, \quad y = 6x, \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>(y = 10)</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>(y = 6x)</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>(y = 48)</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>(y = 2.5x)</td>
</tr>
</tbody>
</table>
Shelves

This problem gives you the chance to:
- solve problems in a spatial context
- identify and distinguish the four point graphs related to this situation

Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.
 a. How many planks of wood does he need?
 b. How many bricks does he need?
 c. How high will the shelves be?
 d. How much will the bookcase cost?

\[
\begin{align*}
\text{Inches} &= \frac{10}{3} : 27 : 45 \\
 &\quad 2:\text{18} : 4:\text{th} : \frac{3}{6} \\
\text{Cost} &= \$12.50
\end{align*}
\]
The diagram below shows graphs with the following descriptions:

Description One: The cost of the bookcase against the number of shelves.
Description Two: The number of bricks against the number of shelves.
Description Three: The height of the bookcase against the number of shelves.
Description Four: The width of the bookcase against the number of shelves.

The equations of the graphs are:

\[y = 48, \quad y = 10x, \quad y = 6x, \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Description 3</td>
<td>(y = 10x)</td>
</tr>
<tr>
<td>B</td>
<td>Description 2</td>
<td>(y = 6x)</td>
</tr>
<tr>
<td>C</td>
<td>Description 4</td>
<td>(y = 48)</td>
</tr>
<tr>
<td>D</td>
<td>Description 1</td>
<td>(y = 2.5x)</td>
</tr>
</tbody>
</table>
Shelves

This problem gives you the chance to:
• solve problems in a spatial context
• identify and distinguish the four point graphs related to this situation

Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.

 a. How many planks of wood does he need?
 \[\frac{5}{30} \]

 b. How many bricks does he need?
 \[\frac{50 \text{ inches}}{12.50} \]

 c. How high will the shelves be?

 d. How much will the bookcase cost?
The diagram below shows graphs with the following descriptions:

Description One: The cost of the bookcase against the number of shelves.

Description Two: The number of bricks against the number of shelves.

Description Three: The height of the bookcase against the number of shelves.

Description Four: The width of the bookcase against the number of shelves.

The equations of the graphs are

\[y = 48, \quad y = 10x, \quad y = 6x, \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>three</td>
<td>(y = 10x)</td>
</tr>
<tr>
<td>B</td>
<td>two</td>
<td>(y = 6x)</td>
</tr>
<tr>
<td>C</td>
<td>four</td>
<td>(y = 48)</td>
</tr>
<tr>
<td>D</td>
<td>one</td>
<td>(y = 2.5x)</td>
</tr>
</tbody>
</table>
Shelves

This problem gives you the chance to:
• solve problems in a spatial context
• identify and distinguish the four point graphs related to this situation

Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.
 a. How many planks of wood does he need?
 b. How many bricks does he need?
 c. How high will the shelves be?
 d. How much will the bookcase cost?
The diagram below shows graphs with the following descriptions:

Description One: The cost of the bookcase against the number of shelves.
Description Two: The number of bricks against the number of shelves.
Description Three: The height of the bookcase against the number of shelves.
Description Four: The width of the bookcase against the number of shelves.

The equations of the graphs are

\[y = 10x \quad y = 6x \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>(y = 10x)</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>(y = 4x)</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>(y = 4x)</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>(y = 2.5x)</td>
</tr>
</tbody>
</table>
Shelves

This problem gives you the chance to:
• solve problems in a spatial context
• identify and distinguish the four point graphs related to this situation

Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.

 a. How many planks of wood does he need?

 3 × 5 = 15

 b. How many bricks does he need?

 5 × 15 = 75

 c. How high will the shelves be?

 3 inches

 d. How much will the bookcase cost?

 2.5 × 5 = 12.5

 $12.50
The diagram below shows graphs with the following descriptions:

Description One: The cost of the bookcase against the number of shelves.
Description Two: The number of bricks against the number of shelves.
Description Three: The height of the bookcase against the number of shelves.
Description Four: The width of the bookcase against the number of shelves.

The equations of the graphs are

\[y = 48, \quad y = 10x, \quad y = 6x, \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td># 1</td>
<td>(y = 10x)</td>
</tr>
<tr>
<td>B</td>
<td># 3</td>
<td>(y = 6x)</td>
</tr>
<tr>
<td>C</td>
<td># 4</td>
<td>(y = 48)</td>
</tr>
<tr>
<td>D</td>
<td># 2</td>
<td>(y = 2.5x)</td>
</tr>
</tbody>
</table>
Shelves

This problem gives you the chance to:
• solve problems in a spatial context
• identify and distinguish the four point graphs related to this situation

Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.
 a. How many planks of wood does he need?
 b. How many bricks does he need?
 c. How high will the shelves be?
 d. How much will the bookcase cost?

 One: 10 in All: 50 in. high.
 5 planks $75
 30 bricks

Copyright © 2007 by Mathematics Assessment
Resource Service. All rights reserved.
The diagram below shows graphs with the following descriptions:

Description One: The cost of the bookcase against the number of shelves.
Description Two: The number of bricks against the number of shelves.
Description Three: The height of the bookcase against the number of shelves.
Description Four: The width of the bookcase against the number of shelves.

The equations of the graphs are

\[y = 48, \quad y = 10x, \quad y = 6x, \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>[y = 10x]</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>[y = 6x]</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>[y = 48]</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>[y = 2.5x]</td>
</tr>
</tbody>
</table>
Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.
 a. How many planks of wood does he need?
 b. How many bricks does he need?
 c. How high will the shelves be?
 d. How much will the bookcase cost?

 [Diagrams showing three shelves with dimensions and calculations]

 - Planks of wood: 6
 - Bricks: 360
 - Height: 108 inches
 - Cost: $15
The diagram below shows graphs with the following descriptions:

- **Description One:** The cost of the bookcase against the number of shelves.
- **Description Two:** The number of bricks against the number of shelves.
- **Description Three:** The height of the bookcase against the number of shelves.
- **Description Four:** The width of the bookcase against the number of shelves.

The equations of the graphs are:

\[y = 48, \quad y = 10x, \quad y = 6x, \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>(y = 10x)</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>(y = 6x)</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>(y = 48)</td>
</tr>
<tr>
<td>D</td>
<td>One (1)</td>
<td>(y = 2.5x)</td>
</tr>
</tbody>
</table>
Shelves

This problem gives you the chance to:
• solve problems in a spatial context
• identify and distinguish the four point graphs related to this situation

Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.
 a. How many planks of wood does he need?
 ____ 5 ____
 b. How many bricks does he need?
 ____ 30 ____
 c. How high will the shelves be?
 ____ 96" ____
 d. How much will the bookcase cost?
 ____ $12.50 ____
The diagram below shows graphs with the following descriptions:

Description One: The cost of the bookcase against the number of shelves.

Description Two: The number of bricks against the number of shelves.

Description Three: The height of the bookcase against the number of shelves.

Description Four: The width of the bookcase against the number of shelves.

The equations of the graphs are

\[y = 48, \quad y = 10x, \quad y = 6x, \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>(y = 48)</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>(y = 10x)</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>(y = 6x)</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>(y = 2.5x)</td>
</tr>
</tbody>
</table>
Shelves

This problem gives you the chance to:
• solve problems in a spatial context
• identify and distinguish the four point graphs related to this situation

Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.
 a. How many planks of wood does he need? 5 planks
 b. How many bricks does he need? 30 bricks
 c. How high will the shelves be? 10 inches each
 d. How much will the bookcase cost? $12.50
The diagram below shows graphs with the following descriptions:

- **Description One:** The cost of the bookcase against the number of shelves.
- **Description Two:** The number of bricks against the number of shelves.
- **Description Three:** The height of the bookcase against the number of shelves.
- **Description Four:** The width of the bookcase against the number of shelves.

The equations of the graphs are

\[y = 48, \quad y = 10x, \quad y = 6x, \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>(y = 10x)</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>(y = 6x)</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>(y = 48)</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>(y = 2.5x)</td>
</tr>
</tbody>
</table>
Shelves

This problem gives you the chance to:
• solve problems in a spatial context
• identify and distinguish the four point graphs related to this situation

Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.

 a. How many planks of wood does he need?

 b. How many bricks does he need?

 c. How high will the shelves be?

 d. How much will the bookcase cost?
The diagram below shows graphs with the following descriptions:

Description One: The cost of the bookcase against the number of shelves.

Description Two: The number of bricks against the number of shelves.

Description Three: The height of the bookcase against the number of shelves.

Description Four: The width of the bookcase against the number of shelves.

The equations of the graphs are

\[y = 48, \quad y = 10x, \quad y = 6x, \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(y = 10x)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>(y = 2.5x)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>(y = 48)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>(y = 6x)</td>
<td></td>
</tr>
</tbody>
</table>
Shelves

This problem gives you the chance to:
• solve problems in a spatial context
• identify and distinguish the four point graphs related to this situation

Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.
 a. How many planks of wood does he need?
 b. How many bricks does he need?
 c. How high will the shelves be?
 d. How much will the bookcase cost?
The diagram below shows graphs with the following descriptions:

Description One: The cost of the bookcase against the number of shelves.

Description Two: The number of bricks against the number of shelves.

Description Three: The height of the bookcase against the number of shelves.

Description Four: The width of the bookcase against the number of shelves.

The equations of the graphs are:

\[y = 10x, \quad y = ax, \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>(y = 10x)</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>(y = 6x)</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>(y = 4.5)</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>(y = 2.5x)</td>
</tr>
</tbody>
</table>
Shelves

This problem gives you the chance to:
• solve problems in a spatial context
• identify and distinguish the four point graphs related to this situation

Pete is making a bookcase for his books and other stuff.

He already has plenty of bricks and can get planks of wood for $2.50 each.

Each plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.

For each shelf, Pete will put three bricks at each end then put a plank of wood on top. The diagram shows three shelves.

1. Pete wants five shelves in his bookcase.
 a. How many planks of wood does he need?
 b. How many bricks does he need?
 c. How high will the shelves be?
 d. How much will the bookcase cost?
The diagram below shows graphs with the following descriptions:

Description One: The cost of the bookcase against the number of shelves.

Description Two: The number of bricks against the number of shelves.

Description Three: The height of the bookcase against the number of shelves.

Description Four: The width of the bookcase against the number of shelves.

The equations of the graphs are

\[y = 48, \quad y = 10x, \quad y = 6x, \quad y = 2.5x \]

2. Complete this table to match each graph with its description and its equation.

<table>
<thead>
<tr>
<th>Graph letter</th>
<th>Description number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>(y = 10x)</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>(y = 6x)</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>(y = 48)</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>(y = 2.5x)</td>
</tr>
</tbody>
</table>