Matching Situations, Graphs and Linear Equations

Mathematics Assessment Resource Service
University of Nottingham & UC Berkeley

For more details, visit: http://map.mathshell.org
© 2015 MARS, Shell Center, University of Nottingham
May be reproduced, unmodified, for non-commercial purposes under the Creative Commons license detailed at http://creativecommons.org/licenses/by-nc-nd/3.0/ - all other rights reserved
MATHEMATICAL GOALS

This lesson unit is intended to help you assess how well students use algebra to:

- Explore relationships between variables in everyday situations.
- Find unknown values from known values.
- Find relationships between pairs of unknowns and express these as tables and graphs.
- Find general relationships between several variables and express these in different ways by rearranging formulas.

COMMON CORE STATE STANDARDS

This lesson relates to the following Standards for Mathematical Content in the Common Core State Standards for Mathematics:

8.F: Use functions to model relationships between quantities.

This lesson also relates to all the Standards for Mathematical Practice in the Common Core State Standards for Mathematics, with a particular emphasis on Practices 2, 4, and 8:

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

INTRODUCTION

This activity links several aspects of algebra.

- Before the lesson, students work individually on the assessment task *The Guitar Class*. You then review their work and create questions for students to answer, to help them improve their solutions.
- During the lesson, students translate between words, algebraic formulas, tables, and graphs in an interactive whole-class discussion. The intention is that you focus students on making sense of the context using algebra, rather than just the routine use of techniques and skills. Students then work in pairs to graph the relationship between two of the variables. In a final whole-class discussion, students identify general formulas showing the relationships between all the variables.
- In a follow-up lesson, students receive your comments on the assessment task and use these to attempt a similar task, approaching it with insights gained from the lesson.

MATERIALS REQUIRED

- Each student will need two copies of the assessment task *The Guitar Class*, either the *Making and Selling Candles* lesson task sheet, or the *Rescue Helicopter* lesson task sheet, depending on the outcome of the assessment task, a mini-whiteboard, pen, and eraser.
- Each pair of students will need a sheet of graph paper.
- There is a projector resource to support whole-class discussion.

TIME NEEDED

15 minutes before the lesson, a one-hour lesson, and 10 minutes in a follow-up lesson. All timings are approximate. Exact timings will depend on the needs of the class.
BEFORE THE LESSON

Assessment task: The Guitar Class (15 minutes)

Have students do this task in class or for homework, a day or more before the formative assessment lesson. This will give you an opportunity to assess the work and to find out the kinds of difficulties students have with it. You should then be able to target your help more effectively in the next lesson.

Give out The Guitar Class. Introduce the task and help the class to understand the problem and its context.

What does ‘profit’ mean? Read through the questions and try to answer them as carefully as you can. Don’t worry too much if you can’t understand and do everything. I will teach a lesson with a task like this [tomorrow]. By the end of that lesson, your goal is to answer the questions with confidence.

It is important that, as far as possible, students are allowed to answer the questions without your assistance.

Assessing students’ responses

Collect students’ responses to the task. Make some notes on what their work reveals about their current levels of understanding. The purpose of this is to forewarn you of issues that will arise during the lesson itself, so that you may prepare carefully.

We suggest that you do not score students’ work. Research suggests this will be counter-productive, as it encourages students to compare their scores and distracts their attention from what they can do to improve their mathematics.

Instead, help students to make further progress by summarizing their difficulties as a list of questions. Some suggestions for these are given in the Common issues table on the next page. We suggest that you make a list of your own questions, based on your students’ work, using the ideas in the table. We recommend you write one or two questions on each student’s work. If you do not have time to do this, you could:

• select a few questions that will be of help to the majority of students and write these questions on the board when you return the work to the students, or
• give each student a printed version of your list of questions and highlight the questions for each individual student.

Choosing the lesson task

After writing your list of questions, use your assessment of students’ current understanding to decide which task to use during the lesson. We have found that many students learn from the Making and Selling Candles task. However, if the majority of your students have answered most of the assessment
task questions correctly, use the *Rescue Helicopter* task instead. *Making and Selling Candles* is a more structured task than *Rescue Helicopter*, so makes less demand on students’ problem solving skills.

Common issues:

<table>
<thead>
<tr>
<th>Suggested questions and prompts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writes no equation or just a few numbers and letters (Q1)</td>
</tr>
<tr>
<td>• What do you know from the question?</td>
</tr>
<tr>
<td>• Suppose you have 10 students. How do you figure out how much profit the teacher would make?</td>
</tr>
<tr>
<td>Writes an equation with a particular value of (n) (Q1)</td>
</tr>
<tr>
<td>For example: The student substitutes (n = 30).</td>
</tr>
<tr>
<td>• Does the calculation method change as you vary (n)?</td>
</tr>
<tr>
<td>• How can you write the calculation for any value of (n)?</td>
</tr>
<tr>
<td>Uses incorrect operation in equation (Q1)</td>
</tr>
<tr>
<td>For example: The student divides the cost by the number of students and adds rather than subtracts (c) to get (p = 70n + c).</td>
</tr>
<tr>
<td>• How much money does each student pay?</td>
</tr>
<tr>
<td>• How much money do the students pay altogether?</td>
</tr>
<tr>
<td>• Is the amount of money you have calculated before paying costs more or less than the profit?</td>
</tr>
<tr>
<td>Draws incorrect graph (Q2)</td>
</tr>
<tr>
<td>For example: The graph has negative slope or is not a straight line.</td>
</tr>
<tr>
<td>• What do you think happens to the amount of profit as the number of students increases?</td>
</tr>
<tr>
<td>• What kind of function links (n) and (p)?</td>
</tr>
<tr>
<td>• What graph would you expect from this equation?</td>
</tr>
<tr>
<td>Does not explain or misinterprets the significance of the x-intercept (Q2)</td>
</tr>
<tr>
<td>For example: The student does not link the answer back to the context. They just write (p = 5.5) and do not mention that this is the point at which the teacher begins to make a profit.</td>
</tr>
<tr>
<td>• What does (n) stand for? Does your answer make sense?</td>
</tr>
<tr>
<td>• Re-read the first part of the sheet. What does (p > 0) mean?</td>
</tr>
<tr>
<td>Uses incorrect operations in formulas in Q3, Q4</td>
</tr>
<tr>
<td>For example: The student writes (p = fn + c) or (f = pn - c).</td>
</tr>
<tr>
<td>• What does ‘profit’ mean?</td>
</tr>
<tr>
<td>• What does (f) stand for?</td>
</tr>
<tr>
<td>• Explain how you would calculate the profit in words.</td>
</tr>
<tr>
<td>Answers Q1-5 correctly</td>
</tr>
<tr>
<td>• Suppose you can make 100 candles from a kit costing $70. Use the profit you would expect to make to calculate the selling price. Graph this relationship.</td>
</tr>
</tbody>
</table>
SUGGESTED LESSON OUTLINE

Interactive whole-class introduction (30 minutes)

Give the class copies of the situation *Making and Selling Candles* and the mini-whiteboards.

Work through this sheet with the class, using episodes of whole-class discussion interspersed with short episodes of paired or individual work. Keep all students interested by asking them to show their answers using the mini-whiteboards. When a student offers an answer, ask other students to comment or explain, rather than evaluating the answer yourself.

Students’ spoken and whiteboard responses will give you information about what they are finding difficult. Organize students to work together in small groups on those parts of the task so as to produce a joint response. Use the joint responses as the basis for further class discussion.

Questions 1 and 2

For example, you could work on Questions 1 and 2 orally:

- What numbers should I write in for \(k \), \(n \) and \(s \)? [Question 1]
- How could we figure out the total profit made, \(p \), from the other numbers? [Question 2]
- Use your mini-whiteboards to show me the equation you need to solve.

Allow students a few minutes to discuss their ideas in pairs and then ask them to present their equations. Ask students to justify every step. Keep linking the context and the representation. For example:

- You have to multiply 4 by 60 [or \(n \) by \(s \)].
- What does that tell you? [The amount of money he makes from selling the candles.]
- What do you have to do next? [Subtract 50 (or \(k \)).]
- Why subtract? [Because the cost of buying the kit will reduce his profit.]
- How can I write this equation using the values of \(k \), \(n \), \(s \)?

Students will probably find more than one way of writing the equation.

When asking students to show equivalence, ask them to explain what the equation means in words, not just rearrange the equation.

- Anthony, you wrote the equation a different way. How did you write it?
- Are these two equations the same? How do you know?
- Kay, do you agree?

Ask students to explore different values of one of the variables:

- What if you charged $3 for each candle? $7?
- What other values could \(n \) take?
- What else could I change?
- What method do I use to calculate the value of \(p \)?
- Does the calculation method change when I change the value of \(n \)? \(s \)? \(k \)?
In this way, show that \(p = 60 \times 4 - 50 \) and that in general \(p = ns - k \).

This generality is not a trivial step. By calculating using different values for each variable, students should become aware that the same method works whatever values are given to those variables. You may need to spend some time establishing this point.

Give students two or three minutes to record their solutions to Question 1 and Question 2, then ask them to read Question 3.

Question 3

Now look together at Question 3. Insert the answer for \(p \) as 190 and erase the selling price, \(s \).

- Suppose we know the cost of the kit, the number of candles that may be made from the kit, and the profit we want to make. How could we figure out the correct selling price?
- Write your method on your mini-whiteboard.
- I see \(p + k \) and \(p - k \). Which do you think is correct? Why? [You first add the cost of buying the kit to the profit, \(50 + 190 \) or \(p + k \).]
- What does that tell you? [The total amount of money you need to make from selling the candles.]
- Then what do you do? [You divide the answer by the number of candles to find the selling price per candle.]

Students should reason that \(s = \frac{190 + 50}{60} \) and that \(s = \frac{p + k}{n} \).

To focus all students on understanding the relationship between the context and the algebra, it can be useful to get a number of different students to explain the same answer.

- Alicia, please explain why Alex is correct, in your own words.
- Kay, you explain it too, in your own words please.

Ask students to explain whether the same method works for different values.

- What method do you use to calculate the value of \(s \)?
- Does the calculation method change when I change the value of \(n \)? \(p \)? \(k \)?

If students produce different equations, get them to link their descriptions of the situation with the different numerical and algebraic representations:

- Are these two ways of writing the same numeric equation? How do you know?
- Are these two ways of writing the algebraic equations equivalent? How do you know?

Finally, focus students’ attention on what they have been doing when they know three values and solve to find the fourth:

- You’ve figured out how to solve for \(p \), and how to solve for \(s \). What else could I change?
Question 4

Erase two numbers, \(n \) and \(p \):

```
<table>
<thead>
<tr>
<th>The cost of buying the kit: (This includes the molds, wax and wicks.)</th>
<th>( k )</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of candles that can be made with the kit:</td>
<td>( n )</td>
</tr>
<tr>
<td>The price at which he sells each candle:</td>
<td>( s )</td>
</tr>
<tr>
<td>Total profit made if all candles are sold:</td>
<td>( p )</td>
</tr>
</tbody>
</table>
```

What numbers could \(n \) and \(p \) be?
Is this the only solution? Give me another solution… and another… and another…

This time there are two numbers that I don’t know, \(n \) and \(p \). What is different from not knowing one number?

Write a table of possibilities and draw me a graph to show how \(p \) depends on \(n \).

Working in pairs (20 minutes)

Hand out graph paper and allow time for students to work on the problem in pairs. As they do this, go round and prompt them to try different pairs of numbers, using the structure of the situation:

If \(n \) were 20, what would this equation mean?

How could you calculate the profit?

How can you write this method in words or symbols?

```
<table>
<thead>
<tr>
<th>( n )</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p )</td>
<td>30</td>
<td>70</td>
<td>110</td>
<td>150</td>
</tr>
</tbody>
</table>
```

What equation fits this table?

What would the graph look like?

What does the graph show?

During the paired work you have two tasks: to note student difficulties and to support them in their thinking about the graphing activity.
Note student difficulties
Students have not been given a table to complete, nor is there a set of axes or scales on the axes. This allows you to find out whether students are able to use their knowledge in context.

- Is students’ use of algebraic notation accurate? Conventional?
- Do they choose a sensible range for the number of students when drawing the graph, including values of n from 0 to 60?
- Do students calculate an appropriate scale for each axis to fit all sensible values of n and p?
- Do they label axes accurately and use equal increments?
- Do they know how to draw and complete an accurate table of values?
- Do they plot the points accurately?
- Do they make a point plot, or join the points to make a linear graph?
- Do students use features such as intercepts and linearity to check the accuracy of their plots?

Support students’ thinking
If students are stuck or making errors, try to support their thinking rather than solve the problems for them. If a pair of students is stuck on a problem, suggest that they seek help from another pair who have dealt with that problem successfully.

You have chosen values of n from x to y. Why did you choose those values?
How do you know that your plot is accurate?
What does the x-intercept show?
Encourage students to continue to link their mathematical representations with the context.
What happens to the profit if the kit only makes five candles?
At this point, $n = 3.5$. Does that make sense?
If students complete this quickly, set one of the following questions:
Is the graph best drawn as a point graph or as a linear graph? Explain your answer.
Explain the relevance of the x- and y-intercepts.
Erase two different variables [s and p, or n and s] and express the relationship between them if all other variables are kept constant.

Whole-class discussion (10 minutes)
Ask students to try to answer Question 5 in pairs. Although students have already done part of this question, they need to recognize this for themselves.

Q5: Write a general formula for showing the relationships between the variables. What do you think you are being asked to do?
Suppose you know s, k, and n and you want to calculate p. What method are you going to use?
Does the method change if you change the value of n?
What’s the method for calculating p, whatever the values of s, k, and n?
If students are really stuck, refer them back to their earlier work:
Look back at Q2. What did you do to calculate s when you knew p, k, n?
What would happen to the calculation method if n were any other value?
Tell me in words how to calculate the total amount of money you collect.
How would you write that using algebra?
How do you calculate the selling price from that?

After a few minutes, ask each pair to show you the four general formulas using their mini-whiteboards:

\[
\begin{align*}
 p &= ns - k \\
 k &= ns - p \\
 n &= \frac{p + k}{s} \\
 s &= \frac{p + k}{n}
\end{align*}
\]

If there is disagreement about formulas, write different versions on the board. Ask students to show the equivalence of different formulas.

Ask students to say how they figured out their answers. Hopefully, some will have focused on writing relationships from the situation, generalizing numerical versions of the equation and others will have used algebraic manipulation.

Follow-up lesson: reviewing the assessment task (10 minutes)

In the next lesson, give students their responses to the original assessment task *The Guitar Class*.

If you have not added questions to individual pieces of work or highlighted questions on a printed list of questions then write your list of questions on the board. Students should select from this list only those questions they think are appropriate to their own work.

If you used *Rescue Helicopter* in the lesson, then give students a fresh copy of *The Guitar Class*:

Work on your own for ten minutes.

[Remember the work you did on The Guitar Class.]

I’m giving you your own solutions and a new sheet to work on.

Read through your original solutions. Use what you have learned in the last lesson to answer the questions [that are on their scripts or on the board]

Then, I want you to answer the questions on the new sheet of the task, *The Guitar Class*. Compare your answers to see what progress you made.

If you did not use *Rescue Helicopter* in the lesson, then give students a copy of this task:

Work on your own for ten minutes.

[Remember the work you did on The Guitar Class.]

Read through your original solutions. Use what you have learned in the last lesson to answer the questions [that are on their scripts or on the board]

Now have a go at the second sheet: *Rescue Helicopter*. Can you use what you have learned to answer these questions?
SOLUTIONS

Assessment task: The Guitar Class

1. \(p = 70n - 400 \)

2. The point where the graph crosses the horizontal axis is helpful in identifying the number of students that must attend before the music teacher will break even. Thus 5 students will make a loss, but 6 students will make a profit.

3. \(p = nf - c \)

4. \(f = \frac{p + c}{n} \)

Lesson activity: Making and Selling Candles

2. The student may give a description such as “You find how much money is made by selling them then take off the cost of the kit”, a formula such as \(p = ns - k \), or a written calculation such as \(p = 60 \times 4 - 50 \).

The calculation method stays the same: you always subtract the costs from the revenue to find profit.

3. For example: \(s = \frac{p + k}{n} \) or \(s = \frac{190 + 50}{60} \).

As in Question 2, the method stays the same whatever values are substituted.

4. Look for a table of values with an appropriate range of values for \(n \), including cases when \(p \) is negative. Check that the graph shows values in equal increments along the axes, is plotted accurately, shows the intercepts and that the points fit a straight line. The \(x \)-intercept is \((12.5,0)\): since you cannot sell half a candle (\(n \) is a discrete variable) this means that at least 13 candles must be sold in order to make a profit. You could discuss whether or not it is correct to draw a line joining the points.

5. \(p = ns - k \) \(k = ns - p \) \(s = \frac{p + k}{n} \) \(n = \frac{p + k}{s} \).

Lesson activity: Rescue Helicopter

The formulas are:

\(t = \frac{d}{s} + w \) \(d = s(t - w) \) \(s = \frac{d}{t - w} \) \(w = t - \frac{d}{s} \).

Stress that \(t \) is the total duration, not the time taken to cover the distance.
The Guitar Class

A music teacher runs a guitar class for 20 weeks. The class meets each week in a rented music studio.

Suppose that:

- It costs the teacher \(c \) dollars to rent the studio for the 20 weeks.
- The class contains \(n \) students.
- Each student pays the teacher a single fee of \(f \) dollars for the course.
- The teacher makes a profit of \(p \) dollars at the end of the course.

1. Suppose that \(c = 400 \) and \(f = 70 \). Write an equation to show how the profit made, \(p \), depends on \(n \), the number of students attending.

2. Graph your equation and explain the significance of the point where the graph crosses the horizontal axis.

3. Write a formula for calculating \(p \) when you know \(c, n, \) and \(f \).

4. Write a formula for calculating \(f \) when you know \(c, n, \) and \(p \).
Making and Selling Candles

A student wants to earn some money by making and selling candles.

Suppose that he can make 60 candles from a $50 kit and that these will each be sold for $4.

<table>
<thead>
<tr>
<th>The cost of buying the kit: $</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>(This includes the molds, wax and wicks.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The number of candles that can be made with the kit:</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>candles</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The price at which he sells each candle: $</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>per candle</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total profit made if all candles are sold: $</th>
<th>p</th>
</tr>
</thead>
</table>

1. Write the values for k, n, and s into the table above.

2. How can you calculate the profit p using the given values of k, n, and s?

Would your method change if the values of k, n, and s were different? Explain your answer.

3. Now that you know the profit, erase the selling price of each candle, s.
 The values of k, n, and p are in the table.
 Suppose you didn't know s. How could you figure it out?

Would your method change if the value of each variable were different? Explain your answer.
4. Now **erase two** numbers: \(n \) and \(p \).

\(k \)	$
\(n \)	candles
\(s \)	per candle
\(p \)	$

| The cost of buying the kit: |
| (This includes the molds, wax and wicks.) |
| The number of candles that can be made with the kit: |
| The price at which he sells each candle: |
| Total profit made if all candles are sold: |

What could these numbers be?

Construct a table of possible values.
Plot a graph to show the relationship.

5. Write down four general formulas showing the relationships between the variables.

\[p = \ldots \quad s = \ldots \]

\[n = \ldots \quad k = \ldots \]
Rescue Helicopter

Time to load and warm up the helicopter before take-off: 5 minutes
The average speed of the helicopter in flight: 1.5 miles per minute
The distance flown to the accident: 60 miles
The total time needed to arrive at the scene of the accident: 45 minutes

Hide each number in turn.
If you didn’t know this number, how might it be found from the other numbers?

Hide two numbers.
What could they be? Construct a table of possible values.
Sketch a graph to show the relationship between these numbers.
Repeat this with another pair of numbers.

Hide all the numbers.
Construct a general formula for the relationship between them.
Try to write your formula in different ways, starting $t=\ldots$, $d=\ldots$, and so on.
Making and Selling Candles

The cost of buying the kit:
(This includes the molds, wax and wicks.)

The number of candles that can be made with the kit:

The price at which he sells each candle:

Total profit made if all candles are sold:

Now erase two numbers: n and p.

The cost of buying the kit:

k

\$

n
candles

The number of candles that can be made with the kit:

n
candles

s

The price at which he sells each candle:

s

\$

p

Total profit made if all candles are sold:

p

\$
Rescue Helicopter

<table>
<thead>
<tr>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to load and warm up the helicopter before take-off:</td>
<td>w</td>
</tr>
<tr>
<td>The average speed of the helicopter in flight:</td>
<td>s</td>
</tr>
<tr>
<td>The distance flown to the accident:</td>
<td>d</td>
</tr>
<tr>
<td>The total time needed to arrive at the scene of the accident:</td>
<td>t</td>
</tr>
</tbody>
</table>

Where:
- w: minutes
- s: miles per minute
- d: miles
- t: minutes
Mathematics Assessment Project

Classroom Challenges

These materials were designed and developed by the Shell Center Team at the Center for Research in Mathematical Education University of Nottingham, England:

Malcolm Swan,
Nichola Clarke, Clare Dawson, Sheila Evans, Colin Foster, and Marie Joubert
with
Hugh Burkhardt, Rita Crust, Andy Noyes, and Daniel Pead

We are grateful to the many teachers and students, in the UK and the US, who took part in the classroom trials that played a critical role in developing these materials

The classroom observation teams in the US were led by
David Foster, Mary Bouck, and Diane Schaefer

This project was conceived and directed for
The Mathematics Assessment Resource Service (MARS) by
Alan Schoenfeld at the University of California, Berkeley, and
Hugh Burkhardt, Daniel Pead, and Malcolm Swan at the University of Nottingham

Thanks also to Mat Crosier, Anne Floyde, Michael Galan, Judith Mills, Nick Orchard, and Alvaro Villanueva who contributed to the design and production of these materials

This development would not have been possible without the support of
Bill & Melinda Gates Foundation
We are particularly grateful to
Carina Wong, Melissa Chabran, and Jamie McKee

The full collection of Mathematics Assessment Project materials is available from

http://map.mathshell.org