\begin{tabular}{|c|c|c|}
\hline Hopewell Geometry \& \multicolumn{2}{|l|}{Rubric} \\
\hline \& Points \& Section points \\
\hline 1. Gives correct answer: 7.1 (accept 7 or \(5 \sqrt{2}\)) Shows correct work such as: \(\sqrt{\left(1^{2}+7^{2}\right)}\) \& \[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \& 3 \\
\hline \begin{tabular}{l}
2. Gives correct answer: \(\mathbf{3 6 . 8}^{\mathbf{o}}\) to \(\mathbf{3 6 . 9}{ }^{\circ}\) \\
Shows correct work such as: \(\sin ^{-1} \frac{3}{5}\) or \(\cos ^{-1} \frac{4}{5}\) or \(\tan ^{-1} \frac{3}{4}\)
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \& 2 \\
\hline \begin{tabular}{l}
3. Gives correct answer: Triangle A \\
Gives correct explanation such as: \\
Triangle 1 is an enlargement of Triangle A by a scale factor of 3 .
\end{tabular} \& \begin{tabular}{l}
1 \\
1
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
4. Gives correct answer: No \\
and \\
Gives a correct explanation such as finds the lengths of all three sides, (\(\sqrt{225}, \sqrt{50}, \sqrt{245)}\), and shows they don't satisfy the Pythagorean Rule. \(245 \neq 225+50\). \\
Accept other methods including: \\
- Uses trigonometry to find the angles (\(71,6,81.9,25.5\)) \\
- Triangle 3 is isosceles \(\therefore\) it has two \(45^{\circ}\) angles. \\
Triangles 1 and 2 are not isosceles \(\therefore\) they do not have \(45^{\circ}\) angles. Angle in shaded triangle \(=180^{\circ}-45^{\circ}\) - non \(45^{\circ}\) angle \(\therefore \neq 90^{\circ}\) \\
Partial credit \\
Gives a partially correct explanation.
\end{tabular} \& 3

(1) \& 3 \\
\hline Total Points \& \& 10 \\
\hline
\end{tabular}

