	Fun Size Can	Rubric	
		Points	$\begin{aligned} & \text { Sectio } \\ & \text { n poin } \\ & \text { ts } \end{aligned}$
1.	Gives correct answers: $15.9-16.0 \mathrm{~cm}$ and $\mathbf{2 . 5} \mathbf{- 2 . 6} \mathbf{~ c m}$. Shows correct work such as: Substitutes in the formula $\mathbf{V}=\pi \mathbf{r}^{\mathbf{2}} \mathbf{h}$ to find the height of the can with radius 2 cm and Substitutes in the formula $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$ to find the height of the can with radius 5 cm . States that the can with radius 2 cm is easy to hold or unstable or tall and thin: the can with radius 5 cm is difficult to hold or drink from or short and fat or equivalent.	2×1 1 1	4
2.	Gives correct answers: $\mathbf{2 2 4 . 9} / \mathbf{2 2 6} .2 / / 72 \pi \mathrm{~cm}^{2} 235.6 / 239 / 75 \pi \mathrm{~cm}^{2}$ Uses the formula $\mathbf{S}=\mathbf{2} \boldsymbol{\pi} \mathbf{r}^{\mathbf{2}}+\mathbf{2} \boldsymbol{\pi} \mathbf{r h}$ to find the surface areas of cylinders with radii 2 cm and 5 cm .	1 1	2
	Decides to find the surface area of other cylinders. Correctly finds the height and surface area of a cylinders with radii between 2 cm and 5 cm . $\begin{array}{llll} \mathbf{r}=3, & \mathbf{h}=7.1 / 7, & \mathbf{A} \approx 190.4 \mathrm{~cm}^{2} & \text { If graph drawn allow } \\ \mathbf{r}=4, & \mathrm{~h}=4.0, & \mathrm{~A} \approx 201.1 \mathrm{~cm}^{2} & \text { point for values plotted. } \end{array}$ States that from these results it appears that the minimum surface area is when the radius is about $\mathbf{3 ~ c m}$. Finds surface areas of cylinders with radii around $\mathrm{r}=3$. e.g. $\mathbf{r}=\mathbf{2 . 5}, \mathbf{h}=\mathbf{1 0 . 2}, \mathbf{A}=199.5 \mathrm{~cm}^{2} \quad$ Allow a point for each correct area $\mathrm{r}=3.5, \mathrm{~h}=5.2, \quad \mathrm{~A}=191.3 \mathrm{~cm}^{2}$ States that from calculations, or a graph of r / A (or h / A), the minimum surface area has radius $\mathbf{3 c m}$, height 7 cm .	1 1 1 1	4
	Total Points		10

