Fearless Frames	Rubric	
	Points	Section points
Shows that the volume of the prism $V=x^{2} y$. The perimeter of the prism $P=8 x+4 y=60 \quad y=15-2 x$ $\mathrm{V}=\mathrm{x}^{2}(15-2 \mathrm{x})$ The graph of V against x shows that as x increases from 1 to 5 the volume increases, and than decreases for values of x from 5 to 7 . V is max when $x=5$. Alternatively May make a list showing the values $\mathrm{x}=4$ and volume 112 $x=6 \text { and volume } 108$ When $\mathrm{x}=5, \mathrm{y}=5$ and $\mathrm{V}=125$ States that for $\mathrm{P}=60$ meters, the maximum volume is 125 cubic meters.	3 2 or 2	5
Shows that the height of the equilateral triangle is $\sqrt{ } 3 x / 2$. The volume of the prism $(V)=\sqrt{3} x^{2} y / 4$ The perimeter of the prism $(P)=6 x+3 y=60 \quad y=20-2 x$ $V=\sqrt{3} x^{2}(20-2 x) / 4$ V is maximum when $x=y=6^{2 / 3} \quad$ (accept values $6-7$) For perimeter 60 meters, the maximum volume is 128 cubic meters. Accept vales 124-128	4	4
Advise the customer that, using 60 meters of tubing, a container with a cross section which is an equilateral triangle holds a little more than one which is a square.	1 ft	1
Total Points		10

