Triangular Frameworks	Rubric	
	Points	Section points
1. Finds examples that match the given general statement, May draw diagrams. For example, when $\mathrm{c}=7, \mathrm{~b}=6, \mathrm{a}=5$. Searches for patterns and makes statements such as: When $\mathrm{c}=7$ there are six possibilities.	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	3
2. Considers different values of c . Shows that as c increases the number of triangles increases. Makes generalizations based on evidence. The smallest value of c is 4	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	4
3. Searches for patterns. Uses algebra Notes that when n is even/odd the number of possible triangles is $\frac{(\mathrm{c}-2)^{2}}{4}$ or $\frac{(c-1)(c-3)}{4}$.	1 2×1	3
Total Points		10

