This diagram shows three glasses (not drawn to scale).

The measurements are all in centimeters.

The volume of a cylinder =
$$\pi r^2 h$$

The volume of a sphere = $\frac{4\pi}{3}r^3$
The volume of a cone = $\frac{\pi r^2 h}{3}$

The bowl of glass 1 is cylindrical. The diameter is 5 cm and the height is 6 cm.

The bowl of glass 2 is a cylinder with a hemispherical bottom. The diameter is 6 cm and the height of the cylinder is 3 cm.

The bowl of glass 3 is an inverted cone. The diameter is 6 cm and the slant height is 6 cm.

1. Find the vertical height of the bowl of glass 3. Show your work.

Rythagoram Theorem m: Radius: 3

$$6^2 = 3^2 + b^2$$
 $b = \sqrt{27} = b = 3\sqrt{3}$

$$62 = 32 + 62$$

 $62 = 62 - 32$
 $62 = 36 - 9$

2. Calculate the volume of the bowl of each of these glasses. Show your work.

$$rodius = d \div 2$$

$$2.5^{2}(6)T = 6.25.6\pi = 37.5$$
 17.75 cm³

3/3015,2 cm.

b. Glass 2
Sphere =
$$4\pi r^3 = 4\pi 2^3 = 4\pi 27 = 108\pi = 36\pi \div 2 = 18\pi 45\pi \text{ or } 141.37\text{cm}^3$$

cylinder = $\pi r^2 h = \pi 3^2 \cdot 3 = \pi 9 \cdot 3 \div 27\pi$ because need to

inder =
$$\pi r^2 h = \pi 3^2 \cdot 3 = \pi 9 \cdot 3 \neq 27\pi$$

Cylinder + hemisphere = glass 2
 $27\pi + 18\pi = 45\pi \text{ or } \pi 41.3 \text{ cm}^3$

Glass 3
From problem 1 you get the reight of it which is
$$3\sqrt{3}$$
. If cone = $\pi 3^2 \cdot 8\sqrt{3} = \pi 3^2 \cdot 3 = \pi 9\sqrt{3} = 5.588\pi$ radius=3

neight of hemisphere = 3 3cm already filled 45T = height of glass 2

$$3.5$$
 cm /

4511 - 2 = mapt = 22.5T - Liquid

22.5TT -18TT = 4.5TT /: BUTTOM is full so only the sphere is remained

4.5T = (32 h TT) = volume of cylinder 4.5T = 9hT

4.5 = 9h

h= .5

.5 from cylinder pilus nemisphere 3cm eavals

3.5 cm

This diagram shows three glasses (not drawn to scale).

The measurements are all in centimeters.

The volume of a cylinder = $\pi r^2 h$ The volume of a sphere = $4\pi r^3$ The volume of a cone = $\pi r^2 h$

The bowl of glass 1 is cylindrical. The diameter is 5 cm and the height is 6 cm.

The bowl of glass 2 is a cylinder with a hemispherical bottom. The diameter is 6 cm and the height of the cylinder is 3 cm.

The bowl of glass 3 is an inverted cone. The diameter is 6 cm and the slant height is 6 cm.

1. Find the vertical height of the bowl of glass 3. Show your work.

- 2. Calculate the volume of the bowl of each of these glasses. Show your work.
- TT 2.52 6 a. Glass 1 T 6.25 x 6

cm.

b. Glass 2 4 77 3 27 9 36 TT

 $\frac{3}{2}$ cm

22.5 To con eylinder

4.5 To con eylinder

4.5 To x3 = \frac{1}{2} cm

(2)

This diagram shows three glasses (not drawn to scale).

The measurements are all in centimeters.

The volume of a cylinder =
$$\pi r^2 h$$

The volume of a sphere = $\frac{4\pi}{3}r^3$
The volume of a cone = $\frac{\pi r^2}{3}h$

The bowl of glass 1 is cylindrical. The diameter is 5 cm and the height is 6 cm.

The bowl of glass 2 is a cylinder with a hemispherical bottom. The diameter is 6 cm and the height of the cylinder is 3 cm.

The bowl of glass 3 is an inverted cone. The diameter is 6 cm and the slant height is 6 cm.

1. Find the vertical height of the bowl of glass 3. Show your work.

$$\frac{6}{8} = 3 \qquad 3^{2} + x^{2} = 36$$

$$9 + x^{2} = 36$$

$$x^{2} = 37$$

$$x = 5.196$$

- 2. Calculate the volume of the bowl of each of these glasses. Show your work.
- a. Glass 1

b. Glass 2

$$(3)^{2}(3)(17) + \frac{4\pi}{3.2}(3)^{3} = 84.833 + 56.55 = 141.372$$

$$\frac{1}{3}(5.196) = 3\pi(5.196) = 48.97114628$$

3.5 cm

$$\frac{141.37}{2} = 70.685$$

$$9\pi(x) = 70.685$$

$$28.274 = 70.685$$

$$x = 2.5$$

$$h = 6 - 2.5 = 3.5$$

3

This diagram shows three glasses (not drawn to scale).

The measurements are all in centimeters.

The volume of a cylinder =
$$\pi r^2 h$$

The volume of a sphere = $\frac{4\pi}{3}r^3$
The volume of a cone = $\frac{\pi r^2}{3}h$

The bowl of glass 1 is cylindrical. The diameter is 5 cm and the height is 6 cm.

The bowl of glass 2 is a cylinder with a hemispherical bottom. The diameter is 6 cm and the height of the cylinder is 3 cm.

The bowl of glass 3 is an inverted cone. The diameter is 6 cm and the slant height is 6 cm.

1. Find the vertical height of the bowl of glass 3. Show your work.

- 2. Calculate the volume of the bowl of each of these glasses. Show your work.
- a. Glass 1

b. Glass 2

_________ cm

18 of = volume of hemisphere
22.5 of = half of total volume
27 of = volume of cylinder
3 = height of cylinder

 $\frac{4.5\pi}{4.5\pi}$ $\frac{4.5\pi}{2.7\pi}$ $\frac{9x}{52\pi}$ $\frac{4}{6}$ $\frac{3}{6}$ $\frac{3}{6}$ $\frac{3}{6}$

2

This diagram shows three glasses (not drawn to scale).

The measurements are all in centimeters.

The volume of a cylinder = $\pi r^2 h$ The volume of a sphere = $\frac{4\pi}{3}r^3$ The volume of a cone = $\frac{\pi r^2}{3}h$

The bowl of glass 1 is cylindrical. The diameter is 5 cm and the height is 6 cm.

The bowl of glass 2 is a cylinder with a hemispherical bottom. The diameter is 6 cm and the height of the cylinder is 3 cm.

The bowl of glass 3 is an inverted cone. The diameter is 6 cm and the slant height is 6 cm.

1. Find the vertical height of the bowl of glass 3. Show your work.

$$a^{2}+b^{2}=c^{2}$$
 $a^{2}+q=36$
 $a^{2}=27$
 $a=\sqrt{27}\approx 5.196$

2. Calculate the volume of the bowl of each of these glasses. Show your work.

a. Glass 1

$$\pi r^2 h = \pi (2.5)^2 (6) = (6.25)(6)\pi = 37.5 \pi$$

$$(\approx 117.75) \pm \frac{1125}{117}$$

b. Glass 2

$$\pi \Gamma^2 h = \pi (3)^2 (3) = 27\pi$$

 $\frac{4\pi \Gamma^3}{3} = (4)(3)\pi = 36\pi$ hemisphere to 18 π

c. Glass 3
$$\frac{7\pi r^2 h}{3} = \frac{7\pi (3^2)(5.2)}{3} = 15.67\pi$$

$$\frac{\cancel{2}}{3} = \frac{\cancel{3}}{3} = \frac{\cancel{3}}{3} = 15.67\pi$$

$$\cancel{2} = \frac{\cancel{3}}{3} = \frac{\cancel{3}$$

$$\frac{27\pi}{3} = \frac{9\pi}{1} = 9\pi c \text{ of liquid per cm}$$

