1. For each of the following equalities and inequalities, find two values for x that make the statement true.

a.
$$x^2 = 121$$

b.
$$x^2 = x$$

c.
$$x^2 < x$$

d.
$$(x-1)(5x^4-7x^3+x)=0$$

e.
$$1776x + 1066 \ge 365$$

f.
$$x^2 > x^3$$

g.
$$|x| = x$$

- 2. Some of the equations and inequalities on the page opposite have exactly two solutions; others have more than two solutions.
 - a. Write down two equations or inequalities that have exactly two solutions. Explain your answer.

These are quadratic equations and so have 2 solutions

b. Write down one equation or inequality that has more than two solutions, but not infinitely many solutions. How many solutions does it have?

$$(x-1)(5x^{4-7}x^{3+x})=0$$

This has 5 solutions

c. Write down two equations or inequalities that have an infinite number of solutions.

1. For each of the following equalities and inequalities, find two values for x that make the statement true.

a.
$$x^2 = 121$$

b.
$$x^2 = x$$

c.
$$x^2 < x$$

d.
$$(x-1)(5x^4-7x^3+x)=0$$

e.
$$1776x + 1066 \ge 365$$

1776x= -701

$$\mathcal{S}$$

f.
$$x^2 > x^3$$

g.
$$|x| = x$$

- 2. Some of the equations and inequalities on the page opposite have exactly two solutions; others have more than two solutions.
 - a. Write down two equations or inequalities that have exactly two solutions. Explain your answer.

 $x^2 = 225 \times x^4 = 16$

These 2 equations are powers to an even degree, meaning must there are always Z solutions.

One positive & one negative,

b. Write down one equation or inequality that has more than two solutions, but not infinitely many solutions. How many solutions does it have?

23+6x2+112+6

It has 3 solutions (==-1,-2,-3)

c. Write down two equations or inequalities that have an infinite number of solutions.

x = x

x+1=x+1

1. For each of the following equalities and inequalities, find two values for *x* that make the statement true.

a.
$$x^2 = 121$$
 $x : 2\sqrt{12}$

b.
$$x^2 = x \quad x^2 \cdot x = 0$$

 $x(x-1) = 0$
 $x = 0$ or 1

c.
$$x^2 < x$$
 $x^2 - x < 0$
 $x(x-x) < 0$
 $x > 0$ $x < 1$

d.
$$(x-1)(5x^4-7x^3+x)=0$$

 $(x-1)(x)(5x^3-7x^2+1)=0$
 $(x-1)(x)(x^2(5x-7)+1)=0$
 $x=1000$

e.
$$1776x + 1066 \ge 365$$

$$1776x \ge -701$$

$$1776$$

$$x \ge -0.39 + 7011...$$

f.
$$x^2 > x^3$$

 $x^2 - x^3 > 0$
 $x^3 (1-x) > 0$
 $x > 0 > 0$

g.
$$|x| = x$$

2. Some of the equations and inequalities on the page opposite have exactly two solutions; others have more than two solutions.

a. Write down two equations or inequalities that have exactly two solutions. Explain your answer.

$$x^2 - 5x + 6 = 0 \Rightarrow (x-2)(x-3) = 0 \Rightarrow x = 2 \text{ op } 3$$

$$2X^{2} + 11X + 5 = 0 = 7 (x+5)(2x+1) = 0 = 7 X = -5 \text{ or } \frac{1}{2}$$

b. Write down one equation or inequality that has more than two solutions, but not infinitely many solutions. How many solutions does it have?

$$x^3 + 2x^2 - 15x + x^2 + 2x - 15 = 0 = 7 \times 3 + 3x^2 - 13x - 15 = 0$$

c. Write down two equations or inequalities that have an infinite number of solutions.

1. For each of the following equalities and inequalities, find two values for x that make the statement true.

a.
$$x^2 = 121$$

b.
$$x^2 = x$$

$$X = 1$$

$$X=1$$
 $X=0$

c.
$$x^2 < x$$

$$X=\frac{1}{2}$$
 $X=\frac{1}{4}$

d.
$$(x-1)(5x^4-7x^3+x)=0$$
 $X=1$
 $5x^5-7x^4+x^2-5x^4+7x^3-y=0$
 $5x^5+12x^4+7x^3+x^2-x=0$

e.
$$1776x + 1066 \ge 365$$

$$X = 1$$

$$X=2$$

f.
$$x^2 > x^3$$

$$X = -1$$
 $X = -2$

g.
$$|x| = x$$

Page 10

- 2. Some of the equations and inequalities on the page opposite have exactly two solutions; others have more than two solutions.
 - a. Write down two equations or inequalities that have exactly two solutions. Explain your answer.

 $ax^2 = 121 b x^2 = x$ For a, it is because a

positive number only has 2 square roots - one positive and one nearline For b, it is because any number & one including one, will equal itself 1×1 or 12=1 (itself) Also anything multiplied by zero, 15 2010 including zero. 0×0, 02 = 0(itself)

b. Write down one equation or inequality that has more than two solutions, but not infinitely many solutions. How many solutions does it have?

(x-1)(5x4-7x3+x)=0 has 5 solutions x4->4

c. Write down two equations or inequalities that have an infinite number of solutions.

X LX 1716 x + 1066 = 365

1. For each of the following equalities and inequalities, find two values for x that make the statement true.

a.
$$x^2 = 121$$

b.
$$x^2 = x$$

c.
$$x^2 < x$$

d.
$$(x-1)(5x^4-7x^3+x)=0$$

e.
$$1776x + 1066 \ge 365$$

 $(776x \ge -703$
 $x \ge -0.36$

$$f. \qquad x^2 > x^3$$

f. $x^2 > x^3$ anything regalite

10

g.
$$|x| = x$$

anything positive ____

- 2. Some of the equations and inequalities on the page opposite have exactly two solutions; others have more than two solutions.
 - a. Write down two equations or inequalities that have exactly two solutions. Explain your answer.

 $x^2 = 64$ and $x^2 = x$, $x^2 = 64$ has only 2 solutions: x = 8 or -8because you square root both sides. $\sqrt{64}$ can have both positively regative solution. $x^2 = x$ has only 2 solutions: 1 + 0. Nothing negative can work and anything greater than 1 can't work. This only works with numbers that multiply w/ themselves and equal themselves. The only possibilities are 1 + 0.

b. Write down one equation or inequality that has more than two solutions, but not infinitely many solutions. How many solutions does it have?

 $(x-1)(5x^4-7x^3+x)=0$ has 5 solutions

c. Write down two equations or inequalities that have an infinite number of solutions.

|x| = x and $x^4 > x^5$, |x| = x has an infinite # of aegative solutions.