Sorting Functions

T1

On the next page are four graphs, four equations, four tables, and four rules.

Your task is to match each graph with an equation, a table and a rule.

1. Write your answers in the following table.

Graph	Equation	Table	Rule
A	С	В	A
В	D	A	C
C	В	C	P
D	A	D	В

2. Explain how you matched each of the four graphs to its equation.

Graph A Graph A isn't a linear equation since it isn't a straight line, so there must be a squared in the equation. I took (2,4) and found the relationship between the x x x y x y = x².

Graph B Graph B, a straight line, is a linear equation y = x -2 is the only linear equation in the choices.

Graph C Graph Cis side ways, so it fits equation B. $y^2 = x$ is the same as $y = \sqrt{x}$. Since x can't be an equative # (there's no \sqrt{x} of a negative number), the maximum x point is x as shown in Graph x be a comparable lines which fits equation the equation x and the negatives will stay in the all regularity and the positives will stay in the all regularity.

, [
	Graph A	Equation A	Table A	Rule A
	-6 -4 -2 0 2 4 6 -2 -4	xy = 2	x -2 -1 0 1 2 3 y -4 -3 -2 -1 0 1	y is the same as x multiplied by x
	Graph B	Equation B	Table B	Rule B
	4 2 -6 -4 -2 0 2 4 6 -2 -4 -6	$y^2 = x$	x -2 -1 0 1 2 3 y 4 1 0 1 4 9	x multiplied by y is equal to 2
	Graph C	Equation C	Table C	Rule C
	-6 -4 -2 0 2 4 6 -2 -4	$y = x^2$	x 0 1 4 9 16 y 0 ±1 ±2 ±3 ±4	y is 2 less than x
	Graph D	Equation D	Table D	Rule D
	-6 -4 2 0 2 4 6 2	y = x - 2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	x is the same as y multiplied by y

Your task is to match each graph with an equation, a table and a rule.

1. Write your answers in the following table.

Graph	Equation	Table	Rule
A	C	B	A
В	D	A	\mathcal{C}
C	B	C	D
D	A	D	B

2. Explain how you matched each of the four graphs to its equation.
Graph A This graph showed that for each y-value, there were 2 x-values.
The equation was C because you could put a +/- number of x, but the
y-value would be the same
Graph B This graph was linear, so there was only one possible solution whatever
number you plug in. The y-intercept was - 2. Equation matched the
requirements.
Graph C This graph showed that for each X-value, there could be two y-values
The equation was B since, like equation C, it is quadratic, matching
the quadratic graph
Graph D This graph was quation A, since A was the only
one left.

Graph A	Equation A	Table A	Rule A
-6 -4 -2 0 2 4 6 -2 -4	xy = 2	x -2 -1 0 1 2 3 y -4 -3 -2 -1 0 1	y is the same as x multiplied by x
Graph B	Equation B	Table B	Rule B
-6 -4 -2 0 2 4 6 -2 -4 -6	$y^2 = x$	x -2 -1 0 1 2 3 y 4 1 0 1 4 9	x multiplied by y is equal to 2
Graph C	Equation C	Table C	Rule C
6 2 -6 -4 -2 0 2 4 6 -2 -4	$y = x^2$	x 0 1 4 9 16 y 0 ±1 ±2 ±3 ±4	y is 2 less than x
Graph D	Equation D	Table D	Rule D
4 2 0 2 4 6	y = x - 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x is the same as y multiplied by y

Your task is to match each graph with an equation, a table and a rule.

2. Explain how you matched each of the four graphs to its equation.

1. Write your answers in the following table.

Graph	Equation	Table	Rule
A	L	B	A
В		A	C
C	B	C	D
D	X	D	B

Graph A I know that it mutches the equation because y= 2 means
Graph A I know that It multiplying he cause $y = x^2$ means the y can't be negative. Also multiplying x^2 , there can be 2 possible
distres a regalive and positive.
Graph B I know in the equation of y=x-2 to -2 represents
the q-intercept And in the graph the line intersects of
at the yakis
the equations would flipped (y=x2) xy2 x)
the equations would flipped (y=x2) x(y3 x)
equation xy=d, it want be possible and Graph D13 the only one that shows that
equation xy=2, it want be possible and Graph D13
the only one that shows that

Graph A	Equation A		Rule A
-6 -4 -2 0 2 4 6 -2 -4	xy = 2	Table A x -2 -1 0 1 2 3 y -4 -3 -2 -1 0 1	y is the same as x multiplied by x
Graph B	Equation B	Toble P	Rule B
-6 -4 -2 0 2 4 6 -2 -4 -6 -6	$y^2 = x$	Table B x -2 -1 0 1 2 3 y 4 1 0 1 4 9	x multiplied by y is equal to 2
Graph C	Equation C	Table C	Rule C
-6 -4 -2 © 2 4 6 -2	$y = x^2$	Table C x 0 1 4 9 16 y 0 ±1 ±2 ±3 ±4	y is 2 less than x
Graph D	Equation D	Table D	Rule D
2 0 2 4 6	y = x - 2	$x - 2 - 1 0 1 2 4$ $y - 1 - 2 \pm \infty 2 1 0.5$	x is the same as y multiplied by y

Your task is to match each graph with an equation, a table and a rule.

1. Write your answers in the following table.

Graph	Equation	Table	Rule
A	С	B	A
В	D	A	С
С	В	С	D
D	A	D	В

2. Explain how you matched each of the four graphs to its equation.

Graph A I found (2,4) on the graph and

Since 4=22, the equation is y=x2

Graph B I found (-2, -4) on the graph and

Since - 4=-2-2, the equation is y=x=2

Graph C I found (4,2) and (4-2) and since

 $4 = 2^2$ or $(-2)^2$ the equation is $y^2 = x$

Graph D

			
Graph A	Equation A	Table A √	Rule A 🗸
-6 -4 -2 0 2 4 6 -2 -4 -6	xy = 2	x -2 -1 0 1 2 3 y -4 -3 -2 -1 0 1	y is the same as x multiplied by x
Graph B	Equation B	Table B	Rule B 🗸
-6 -4 -2 0 2 4 6 -2 -4 -6	$y^2 = x$	x -2 -1 0 1 2 3 y 4 1 0 1 4 9	x multiplied by y is equal to 2
Graph C	Equation C/	Table C $$	Rule C /
-6 -4 -2 0 2 4 6 -2 -4	$y = x^2$	x 0 1 4 9 16 y 0 ±1±2±3±4	y is 2 less than x
Graph D	Equation D /	Table D	Rule D 🗸
-6 -4 2 0 2 4 6	y = x - 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x is the same as y multiplied by y

Your task is to match each graph with an equation, a table and a rule.

1. Write your answers in the following table.

Graph	Equation	Table	Rule
A	C	В	Λ
В	D ·	A	С
С	В	С	þ
D	Α	D	В

2. Explain how you matched each of the four graphs to its equation.

Graph A I already knew this graph to be $y=x^2$, from my algebra class, but just to be certain I plugged some points on the line into $y=x^2$. $(2.4) \rightarrow 4=2^2 \rightarrow 4=4 \checkmark (-1,1) \rightarrow 1=(-1)^2 \rightarrow 1=1 \lor$ These points worked, so I wrote down equations

Graph B this graph was a linear equation, with a slope of I and a y-intercept of -2, so, using the standard equation $y=mx+b \rightarrow y=x+2$, I found the equation for the graph, this equation matched equation D, so I wrote D down.

equation for Graph A, since the shape was like that of a quadratic, but rotated 90%

y2=x seemed to fit that, and I also plugged some points on Graph C into y2=x. (4,-2) -> (-1)=4-> 4=4 × (1,1) -> 1=1 × 1=1 × The points worked, so I wrote equation B down.

Graph D Even though I was unsamiliar with the shape of Graph D, equation A

was the only equation left to match with a graph, so therefore Graph D and equation

A must go together. I also plugged in points from graph D into xy=2 (2,1) -> 2(1)=2 -> 2=2 V (-1,2) -> (-1)(-2)=2 -> 2=2 V These points worked, so I wrote equation A down.

Graph A 6 -6 -4 -2 0 2 4 6 -2 -4 -6	Equation A $xy = 2$	Table A X -2 -1 0 1 2 3 Y -4 -3 -2 -1 0 1	Rule A y is the same as x multiplied by x
Graph B 6 4 2 -6 -4 -2 0 2 4 6 -3 -4 -6	Equation B $y^2 = x$	Table B x -2 -1 0 1 2 3 y 4 1 0 1 4 9	X multiplied by y is equal to 2
Graph C 6 4 2 -6 -4 -2 0 2 4 6 -2 -4	Equation C $y = x^2$	Table C x 0 1 4 9 16 y 0 ±1 ±2 ±3 ±4	Rule C y is 2 less than x
Graph D 6 -6-4-2 0 2 4 6	Equation D $y = x - 2$	Table D $ \begin{array}{c cccccccccccccccccccccccccccccccc$	Rule D x is the same as y multiplied by y