Four points, A(4, 0), B(0, 3), C(-3, -1), and D(1, 4) are drawn on the x/y co-ordinate plane.

1. Find the length of the line AB.

2. Find the slope of the line AB. $-\frac{3}{4}$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 0}{0 - 4}$$

$$m = \frac{3}{-4} = -\frac{3}{4}$$

3. Join the sides of the quadrilateral ABCD. Prove that ABCD is a square.

length of
$$\overline{AD} = \sqrt{(0+4)^2 + (4-1)^2} = \sqrt{4^2 + 3^2} = \sqrt{16+9} = \sqrt{25} = 5$$
 units length of $\overline{DC} = \sqrt{(1+3)^2 + (-4+1)^2} = \sqrt{4^2 + 3^2} = \sqrt{16+9} = \sqrt{25} = 5$ units length of $\overline{CB} = \sqrt{(-3-0)^2 + (-1-3)^2} = \sqrt{3^2 + 4^2} = \sqrt{9+16} = \sqrt{25} = 5$ units length of $\overline{AB} = 5$ units \rightarrow ABCD is a \square (the opposite sides of a \square are \cong)

slope of
$$\overline{BC} = \frac{3+1}{0+3} = \frac{4}{3} / \frac{4}{3} - \frac{3}{4} = -1 \rightarrow \overline{AB} \perp \overline{BC}$$

negative
reciprocals

LABC is a right \perp

rectangle

ABCD is a square.

(by def. of a square - A square is a parallelogram that is both a rectangle and a rhombus)

Four points, A(4, 0), B(0, 3), C(-3, -1), and D(1, 4) are drawn on the x/y co-ordinate plane.

y

1. Find the length of the line AB.

2. Find the slope of the line AB.

3. Join the sides of the quadrilateral ABCD. Prove that ABCD is a square.

AB = $\frac{6}{3}$ - $\frac{4}{3}$ = $\frac{4}{3}$ = $\frac{1}{3}$ = $\frac{1}{3}$ = $\frac{1}{3}$

Join the sides of the quadrilateral ABO

$$\overrightarrow{AB} = 5$$
, $-3/4$
 $\overrightarrow{AD} = 5$, $-3/4$
 $\overrightarrow{DC} = 5$, $-3/4$
 $\overrightarrow{DC} = 5$, $+1/3$

(3)

have the same stope have the same stope

Four points, A(4, 0), B(0, 3), C(-3, -1), and D(1, 4)are drawn on the x/y co-ordinate plane.

y

1. Find the length of the line AB.

日(0,3) A(4, 0)2 口(1,-4)

2. Find the slope of the line AB.

$$\frac{3-0}{0-4} = \frac{3}{4}$$

3. Join the sides of the quadrilateral ABCD. Prove that ABCD is a square.

slope of
$$\overline{AB}$$
: $\frac{3}{4}$ $\overline{AB} \perp \overline{AD} / \overline{AB} \perp \overline{BC}$ $\overline{AB} \parallel \overline{CD}$ slope of \overline{AD} : $\frac{4}{3}$ $\overline{AB} \perp \overline{AD} / \overline{AB} \perp \overline{BC}$ $\overline{BC} \parallel \overline{AD}$ slope of \overline{CD} : $\frac{4}{3}$ length of \overline{AB} : 5 slope of \overline{BC} : $\frac{4}{3}$ length of \overline{AD} : $3^2 + 4^2 = C^2$ slope of \overline{BC} : $\frac{4}{3}$ length of \overline{AD} : $3^2 + 4^2 = C^2$

length of AD: 3 + 1 = C $c^{2}=25$ c=5length of $\overline{CD}: 4^{2}+3^{2}=C^{2}$ c=5length of $\overline{BC}: 3^{2}+4^{2}=C^{2}$ c=5

Four points, A(4, 0), B(0, 3), C(-3, -1), and D(1, 4) are drawn on the x/y co-ordinate plane.

y

1. Find the length of the line AB.

2. Find the slope of the line AB.

3. Join the sides of the quadrilateral ABCD. Prove that ABCD is a square.

Slopes
$$DA = \frac{0 - (-4)}{4 - 1} = \frac{4}{3}$$

$$BA = \frac{3 - 0}{0 - 4} = -\frac{3}{4}$$

$$CB = \frac{3 - (-1)}{0 - (-3)} = \frac{4}{3}$$

$$CD = \frac{-4 - (-1)}{1 - (-3)} = -\frac{3}{4}$$

Lengths
$$\int (4-(-1))^{2}+(1-(-3))^{2} = \int (-3)^{2}+4^{2} = \int 9+16 = \int 25 = 5$$

$$\int (8-0)+(0-4)^{2} = \int 3^{2}+(-4)^{2} = \int 9+16 = \int 25 = 5$$

$$\int (3-(-1))^{2}+(0-(-3))^{2} = \int 4^{2}+(3)^{2} = \int 16+9 = \int 25=5$$

$$\int (4-(-1))^{2}+(1-(-3))^{2} = \int (-3)^{2}+(4)^{2} = \int 9+16 = \int 25=5$$

(3)

Four points, A(4, 0), B(0, 3), C(-3, -1), and D(1, 4)are drawn on the x/y co-ordinate plane.

y

1. Find the length of the line AB.

2. Find the slope of the line AB.

$$N = \frac{y_1 - y_2}{x_4 - x_2} = \frac{3 - 0}{0 - 4} = \frac{3}{-4} = \frac{3}{4}$$

3. Join the sides of the quadrilateral ABCD. Prove that ABCD is a square.

Slopes rise Longhts

$$AB = \frac{3}{4}$$
 $BC = \frac{4}{3}$
 $CD = \frac{3}{4}$
 $CD = \frac{4}{3}$
 $CD = \frac{4}{3}$

Lengths

$$AB = S$$
 $BC = S$
 $CO = S$
 $AO = S$

Pythogorean Theorem Chizz

It ish a square.