Square

Four points, A(4, 0), B(0, 3), C(-3, -1), and D(1, 4) are drawn on the x/y co-ordinate plane.

1. Find the length of the line AB.

\[D = \sqrt{\left(x_2-x_1\right)^2 + \left(y_2-y_1\right)^2} \]
\[= \sqrt{(4)^2 + (-3)^2} = \sqrt{16+9} \]
\[= \sqrt{25} = 5 \text{ units} \]

2. Find the slope of the line AB.

\[m = \frac{y_2-y_1}{x_2-x_1} = \frac{3-0}{0-4} = -\frac{3}{4} \]

3. Join the sides of the quadrilateral ABCD. Prove that ABCD is a square.

length of \(\overline{AD} \) = \(\sqrt{(0+4)^2 + (3-1)^2} = \sqrt{16+4} = \sqrt{20} = 5 \text{ units} \)
length of \(\overline{BC} \) = \(\sqrt{(1+3)^2 + (-4+1)^2} = \sqrt{16+9} = \sqrt{25} = 5 \text{ units} \)
length of \(\overline{CD} \) = \(\sqrt{(-3+0)^2 + (-1-3)^2} = \sqrt{9+16} = \sqrt{25} = 5 \text{ units} \)
length of \(\overline{AB} \) = 5 units \(\rightarrow \) \(ABCD \) is a square (the opposite sides of a square are \(\parallel \))

slope of \(\overline{BC} \) = \(\frac{3+1}{0+3} = \frac{4}{3} \) \(\rightarrow \) \(\overline{AB} \perp \overline{BC} \) (\(\perp \) negative reciprocals) \(\rightarrow \) \(\angle ABC \) is a right \(\angle \) \(\rightarrow \) \(ABCD \) is a rectangle

\(ABCD \) is a square.

(by def. of a square - a square is a parallelogram that is both a rectangle and a rhombus)
Square

Four points, A(4, 0), B(0, 3), C(-3, -1), and D(1, 4) are drawn on the x/y co-ordinate plane.

1. Find the length of the line AB.
 \[d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \]
 \[\sqrt{16+9} = \sqrt{25} = 5 \]

2. Find the slope of the line AB.
 \[m = \frac{y_2 - y_1}{x_2 - x_1} \]
 \[m = \frac{3 - 0}{0 - 4} = \frac{-3}{-4} = \frac{3}{4} \]

3. Join the sides of the quadrilateral ABCD. Prove that ABCD is a square.
 \[\overline{AB} = 5, \frac{-3}{4} \]
 \[\overline{AD} = 5, \frac{-4}{-3} = +1\frac{1}{3} \]
 \[\overline{DC} = 5, \frac{-3}{4} \]
 \[\overline{CB} = 5, +1\frac{1}{3} \]

\[\overline{CB} \parallel \overline{AD} \text{ because they have the same slope} \]
\[\overline{DC} \parallel \overline{AB} \text{ because they have the same slope} \]
Square

Four points, A(4, 0), B(0, 3), C(-3, -1), and D(1, 4) are drawn on the x/y co-ordinate plane.

1. Find the length of the line AB.

\[3^2 + 4^2 = c^2 \]
\[9 + 16 = c^2 \]
\[25 = c^2 \]
\[c = 5 \]

\[\sqrt{5} \]

2. Find the slope of the line AB.

\[\frac{3-0}{0-4} = \frac{3}{4} \]

\[-\frac{3}{4} \]

3. Join the sides of the quadrilateral ABCD. Prove that ABCD is a square.

slope of \(\overline{AB} \): \(-\frac{3}{4} \)
slope of \(\overline{AD} \): \(\frac{1}{3} \)
slope of \(\overline{CD} \): \(\frac{3}{4} \)
slope of \(\overline{BC} \): \(\frac{1}{3} \)

\(\overline{AB} \perp \overline{AD} \)
\(\overline{AB} \perp \overline{BC} \)
\(\overline{CD} \perp \overline{AD} \)
\(\overline{BC} \parallel \overline{AD} \)

length of \(\overline{AB} \): 5
length of \(\overline{AD} \): \(3^2 + 4^2 = c^2 \)
\[c^2 = 25 \]
\[c = 5 \]

length of \(\overline{CD} \): \(4^2 + 3^2 = c^2 \)
\[c = 5 \]

length of \(\overline{BC} \): \(3^2 + 4^2 = c^2 \)
\[c = 5 \]
Four points, A(4, 0), B(0, 3), C(-3, -1), and D(1, 4) are drawn on the x/y co-ordinate plane.

1. Find the length of the line AB.
 \[\sqrt{(4-(-3))^2 + (0-3)^2} = \sqrt{7^2 + 3^2} = \sqrt{49 + 9} = \sqrt{58} \approx 7.62 \]
 \[\checkmark \]

2. Find the slope of the line AB.
 \[\frac{3-0}{0-4} = \frac{-3}{4} \]
 \[\checkmark \]

3. Join the sides of the quadrilateral ABCD. Prove that ABCD is a square.

 Slopes
 - DA = \(\frac{0-(-4)}{4-1} = \frac{4}{3} \)
 \[\checkmark \]
 - BA = 3 - 0 \quad \frac{3-0}{0-4} = \frac{-3}{4} \)
 \[\checkmark \]
 - CB = 3 - (-1) \quad \frac{4}{0-(-3)} = \frac{4}{3} \)
 - CD = \(\frac{-4-1}{1-(-3)} = \frac{-3}{4} \)

 Lengths
 - \(\sqrt{(4-(-3))^2 + (0-3)^2} = \sqrt{7^2 + 3^2} = \sqrt{49 + 9} = \sqrt{58} \approx 7.62 \)
 - \(\sqrt{(3-0)^2 + (0-(-4))^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \)
 - \(\sqrt{(3-(-1))^2 + (0-(-3))^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \)
 - \(\sqrt{(4-(-3))^2 + (1-3)^2} = \sqrt{7^2 + 2^2} = \sqrt{49 + 4} = \sqrt{53} \approx 7.28 \)
 \[\checkmark \]
Four points, A(4, 0), B(0, 3), C(-3, -1), and D(1, 4) are drawn on the x/y co-ordinate plane.

1. Find the length of the line AB.
 \[\sqrt{5} \checkmark \]

2. Find the slope of the line AB.
 \[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 0}{0 - 4} = \frac{3}{-4} = -\frac{3}{4} \]

3. Join the sides of the quadrilateral ABCD. Prove that ABCD is a square.

<table>
<thead>
<tr>
<th>Slopes</th>
<th>(\text{rise} \over \text{run})</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>(-\frac{3}{4})</td>
</tr>
<tr>
<td>BC</td>
<td>(\frac{4}{3})</td>
</tr>
<tr>
<td>CD</td>
<td>(-\frac{3}{4})</td>
</tr>
<tr>
<td>AD</td>
<td>(\frac{4}{3})</td>
</tr>
</tbody>
</table>

 | Lengths | \[\begin{array}{c} AB = 5 \hfill \sqrt{5} \\
 BC = 5 \hfill \sqrt{5} \\
 CD = 5 \hfill \sqrt{5} \\
 AD = 5 \hfill \sqrt{5} \end{array} \]

 By the Pythagorean Theorem, the diagonals AC and BD are equal and perpendicular, hence the quadrilateral is a square.

 It is a square.