Proofs Of The Pythagorean Theorem? -[1
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Here are three attempts to prove the Pythagorean theorem.
Look carefully at each attempt. Which is the best 'proof’ ?

Explain your reasoning as fully as possible.

Attempt 1;

Suppose a right triangle has sides of length
a, bandc

Draw squares on the three sides as shown.
Divide these squares into smaller squares. s S %
You can see that the number of squares on the two
shorter sides add up to make the number of squares a
on the longest side. b

So: a?+b2=c2

o

a

Attempt 2

Suppose that you start with
four right triangles with
sides of length a, b and ¢ and
a square tray with sides of
length a+b.

You can arrange the triangles
into the tray in two different
ways as shown here.

In the first way, you leave
two square holes. These have

a combined area of a2 + b2.

In the second way you leave
one large square hole. This

has an area of c?.
Since these areas are equal -
az + b2 = CZ
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Attempt 3:

The proof of the Pythagorean theorem is clear from
this diagram.

The squares on the two shorter sides of the black
triangle are each made from two congruent
triangles, '

These fit together to make the square on the longest
side- the hypotenuse.

The best proof is attempt number 4

This is because
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Proofs Of The Pythagorean Theorem?

Here are three attempts to prove the Pythagorean theorem.
Look carefully at each attempt. Which is the best 'proof ?

Explain your reasoning as fully as possible.

Attempt 1:

Suppose a right triangle has sides of length

a, bandc

Draw squares on the three sides as shown.

Divide these squares into smaller squares.

You can see that the number of squares on the two
shorter sides add up to make the number of squares
on the longest side.

So: a2+b2=¢2

Attempt 2

Suppose that you start with
four right triangles with
sides of length a, b and ¢ and
a square tray with sides of
length a+b.

a+b

You can arrange the triangles
into the tray in two different
ways as shown here.

In the first way, you leave
two square holes. These have

a combined area of a2 + b2.

In the second way you leave
one large square hole. This

has an area of cZ.
Since these areas are equal
az + b2 = CZ

a

b
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Attempt 3;

The proof of the Pythagorean theorem is clear from
this diagram.

The squares on the two shorter sides of the black
triangle are each made from two congruent
triangles.

These fit together to make the square on the longest
side- the hypotenuse.

The best proof is attempt number 4

This is because
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Here are three attempts to prove the Pythagorean theorem.
Look carefully at each attempt. Which is the best 'proof' ?

Explain your reasoning as fully as possible.

Attempt 1:

Suppose a right triangle has sides of length

a, band c

Draw squares on the three sides as shown.

Divide these squares into smaller squares.

You can see that the number of squares on the two
shorter sides add up to make the number of squares
on the longest side.

So: a2+b2=c2

Attempt 2

Suppose that you start with
four right triangles with
sides of length g, b and ¢ and
a square tray with sides of
length a+b.

You can arrange the triangles
into the tray in two different
ways as shown here.

In the first way, you leave
two square holes. These have

a combined area of a2 + b2,
In the second way you leave
one large square hole. This

has an area of ¢.
Since these areas are equal
az + b2 = 02

a+b
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Attempt 3:
The proof of the Pythagorean theorem is clear from

this diagram.

The squares on the two shorter sides of the black
triangle are each made from two congruent
triangles.

These fit together to make the square on the longest
side- the hypotenuse.

‘The best proof is attempt number A

This is because
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Proofs Of The Pythagorean Theorem?

Here are three attempts to prove the Pythagorean theorem.
Look carefully at each attempt. Which is the best 'proof' ?

Explain your reasoning as fully as possible.

Attempt 1:

Suppose a right triangle has sides of length

a, band c

Draw squares on the three sides as shown.

Divide these squares into smaller squares. e S
You can see that the number of squares on the two b
shorter sides add up to make the number of squares a

on the longest side. b

So: a2+bZ2=c2

Attempt 2 a+b
Suppose that you start with

four right triangles with

sides of length a, b and ¢ and c a+h

a square tray with sides of ?

length a+b. b

You can arrange the triangles a b
into the tray in two different
ways as shown here. a b

In the first way, you leave

two square holes. These have
a combined area of a2 + 2. °
In the second way you leave |

one large square hole. This

has an area of c2.
Since these areas are equal

a2+b2:c2
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Attempt 3:

The proof of the Pythagorean theorem is clear from
this diagram.

The squares on the two shorter sides of the black
triangle are each made from two congruent
triangles.

These fit together to make the square on the longest
side- the hypotenuse.

The best proof is attempt number 52

This is because
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Proofs Of The Pythagorean Theorem?

Here are three attempts to prove the Pythagorean theorem.
Look carefully at each attempt. Which is the best 'proof' ?

Explain your reasoning as fully as possible.

Attempt 1:

Suppose a right triangle has sides of length

a, bandc

Draw squares on the three sides as shown.

Divide these squares into smaller squares.

You can see that the number of squares on the two
shorter sides add up to make the number of squares
on the longest side.

So: a2+b2=c?

[y]

Attempt 2

Suppose that you start with
four right triangles with
sides of length g, b and ¢ and
a square tray with sides of
length a+b.

at+h

You can arrange the triangles
into the tray in two different
ways as shown here.

In the first way, you leave
two square holes. These have
a combined area of a2 + b2,
In the second way you leave
one large square hole. This
has an area of c2.

Since these areas are equal
a? + b2 =¢2

a

b

Copyright ® 2011 by Mathematics Assessment Page 6
Resouroe Service. All rights reserved.

CCR 2



Attempt 3:

The proof of the Pythagorean theorem is clear from
this diagram.

The squares on the two shorter sides of the black
triangle are each made from two congruent
triangles.

These fit together to make the square on the longest
side- the hypotenuse.

The best proof is attempt number Q-

This is because
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