Triangular Frameworks

Joe uses metal rods to make triangular frameworks in which each side has a different length.

He buys metal rods which have lengths 1 meter, 2 meters, 3 meters etc and he always keeps one rod of each length in stock.

This diagram shows one of Joe's triangular frameworks.

a, b, c are all integers and c > b > a.

That is, c is the longest side, a is the shortest side and a, b, c are whole numbers.

1. How many different triangular frameworks can Joe make which have a longest side 7 meters long, using the rods he has in stock? Show your work.

6 different frameworks

7,6,5 7,6,4 7,6,3 7,6,2

7,5,4

2 sides Tother side so only these

2. Investigate this situation for other values of c.

c=8 8,7.6	6=9 9,8,7 G.6.4	-
[a] 8,7,5	10 9,8,6 92	`
8,7,4	14 9,8,5	
8,7,3	9,8,4 Can	not use a
8,72	9,82 Imet	er rod.
	976	1 10
8,6,5	975	$\frac{1}{n}$
8,6,43	9, 7, 4	2 +1
8,6,5	9, 7, 3) 6	4 +3 +4 (
8,5,41	9,6,5 2 7	6+3

3. Write down any generalizations you can make.

 $\frac{(c-3)(c-1)}{4} \text{ if } c \text{ is odd} \quad \frac{(c-2)^2}{4} \text{ f } c \text{ is even}$ $\frac{(c-3)(c-1)}{4} \text{ if } c \text{ is odd} \quad \frac{(c-2)^2}{4} \text{ f } c \text{ is even}$ $\frac{(c-3)(c-1)}{4} \text{ if } c \text{ is odd} \quad \frac{(c-2)^2}{4} \text{ f } c \text{ is even}$

2

Joe uses metal rods to make triangular frameworks in which each side has a different length.

He buys metal rods which have lengths 1 meter, 2 meters, 3 meters etc and he always keeps one rod of each length in stock.

This diagram shows one of Joe's triangular frameworks.

a, b, c are all integers and c > b > a.

That is, c is the longest side, a is the shortest side and a, b, c are whole numbers.

1. How many different triangular frameworks can Joe make which have a longest side 7 meters long, using the rods he has in stock? Show your work.

6 ways

c b a c ba c b a 7 5 4 - 7 5 3 - 7 4 3 7 5 3 - 7 4 3 7 5 3 - 7 4 3 7 5 3 - 7 5

2. Investigate this situation for other values of c.

c=8: 9 ways	c=4: ways
8-a-1=5 5+3+1=9	4-2-1 = 1
8-3-3=3	c = 3

3. Write down any generalizations you can make.

total ways=
$$n \cdot c - n(n+a)$$
 $C > n+1+n$

$$0c-a-1 \atop 0c-3-2 \atop 0c-4-3 \atop 0c-(n+1)-n) = n-c-n(n+2)$$

$$(1)$$

Page 11
$$n < 3$$
 $n = 2$

Total Ways = 2.7-2(4) = 14-8=6

Joe uses metal rods to make triangular frameworks in which each side has a different length.

He buys metal rods which have lengths 1 meter, 2 meters, 3 meters etc and he always keeps one rod of each length in stock.

This diagram shows one of Joe's triangular frameworks.

a, b, c are all integers and c > b > a.

That is, c is the longest side, a is the shortest side and a, b, c are whole numbers.

1. How many different triangular frameworks can Joe make which have a longest side 7 meters long, using the rods he has in stock? Show your work.

c>b>a	b+a must be bigger than	c /
77675		
674		
673		
672		
5 4 5 3		
6 ways		

2. Investigate this situation for other values of c.

C7 4 > b 7a	C7876 C	29 8 7 8 6	67/0 9.8
3 2	7 4	85	7 /
c75 4 3	7 3	84	96
c76 5 4	7 2	8 3 8 2	94
5 3 5 2	6 5 6 4	76	92 87
4 3	6 3	74	86
C77	5 9	73	84 83
C456 789 116 C456 789 116	The larger c 1s, the mo can be made smallest c is 4 with o c=3 is impossible as	me treangle	t 2+1=3

3. Write down any generalizations you can make.

even numbers go up in square num	bors odds.
$\frac{c}{4 \cdot 1} = \frac{(c-2)^2 - ways}{c}$	c ways
6 4 22 4	7 6
10 16 42 10-2 = 8	7-2=52=25=6+
4	$7-1=6^2-\frac{36}{2}=9$
	7-3-42-16=4
	(7-1)(7-3) = 6.4 = 6
Copyright © 2011 by Mathematics Assessment Page 11 Resource Service. All rights reserved.	$\frac{(c-1)(c-3)}{c_{4}} = \omega_{3}$ ccr5

Joe uses metal rods to make triangular frameworks in which each side has a different length.

He buys metal rods which have lengths 1 meter, 2 meters, 3 meters etc and he always keeps one rod of each length in stock.

This diagram shows one of Joe's triangular frameworks.

a, b, c are all integers and c > b > a.

That is, c is the longest side, a is the shortest side and a, b, c are whole numbers.

1. How many different triangular frameworks can Joe make which have a longest side 7 meters long, using the rods he has in stock? Show your work.

a+b>c	G+ b>7	acb	<u>c</u>	_ /
		5 66		
		4 = 6		
		3 2 6		
		2 < 6	6 ways	2
		4 < 5	9	
		3 45		

2. Investigate this situation for other values of *c*.

c = 8	a	6	<u> </u>	abc	c
	2	7.	8+	- 0	1+ 234+
	3	7		48	1 september
	4	7		6 68	6
	5	7		78	3 4 54
	6	7		57	24
	- 3	6		47	
	3 4	6		46	
	, -	f 5		2 56	1
	9	way	S	1 de 14	ays.

As concreases so does the # triangles , C=4 is smallest # of triangles made when C=x b=x-1, a=x-2 are the largest lengths each can be

3. Write down any generalizations you can make.

When c is even # of ways is even

C=7 6 ways 3 lots of 6 + 2 lots of 5

C=8 9 ways 5 lots of 7 + 3 lots of 6 + 1 lot of 5

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 6

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 8

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 8

C=9 12 ways 6 lots of 8 + 4 lots of 7 + 2 lots of 8

C=9 12 ways 6 lots of 8 + 4 lots of 8

C=9 12 ways 6 lots of 8 + 4 lots of 8

C=9 12 ways 6 lots of 8 + 4 lots of 8

C=9

Triangular Frameworks

Joe uses metal rods to make triangular frameworks in which each side has a different length.

He buys metal rods which have lengths 1 meter, 2 meters, 3 meters etc and he always keeps one rod of each length in stock.

This diagram shows one of Joe's triangular frameworks.

a, b, c are all integers and c > b > a.

That is, c is the longest side, a is the shortest side and a, b, c are whole numbers.

1. How many different triangular frameworks can Joe make which have a longest side 7 meters long, using the rods he has in stock? Show your work.

b) different variations can be made

7>6>5
7>6>5
7>6>3
7>6>3
7>6>3

7>5>4 7>5>3 6 mays

2. Investigate this situation for other values of c.

827>655 8>625	1 6 >5*4	5 > 4 > 3
(8 > 7 > 5 8 > 6 > 4)	6 >5>3	5-4>2
87774 82623	6>5>2	2 ways
8>7>3 8>5>4	6 > 4>3	
8>7>2 4	4 ways	2494
		4>2>1
x quys		
	,	

		4 -1	
	_ 3	5 - 2	(+1)
9>8>7 4>7>6	- 2	6 - 4	(+ is)
6 4	-1	7-6	A 2)
9 > 875 9 77 7 9 7 9 7 9 7 9 7 9 7 9 7 9 9 9 9			(+3)
97873 97675		9-9	
97872 9>6>4		9 - 12	
1.2		10-16	
• •	11 /0	11 - 21	

- 3. Write down any generalizations you can make.

coboa c-1 could be count =1	
(a+b) >c (c-2)+(c-b)>c (c-3)(c-1)	
(4-1) = 4 = 11 (C-2)2 = Weven only 4 odds	1
5-2 = 9	
(5-3)(5-1) = 8 = 6	
4	2
$8-2-\frac{36}{4}=9/$ $(9-1)(9-3)=\frac{48}{4}=12$	
¥ . 6	