

The drink will be sold in a can that holds 200 cm³.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum. (adius = 3 height = 7.09

Explain your reasons and show all your calculations

The volume of the drink's formula is $(\pi r^2)h = 200c \, m^3$. The area of gluminium is $2\pi r^2 + 2\pi r \times h$, the heights formula is $\frac{200}{100}$. By using the formula of $2\pi r^2 + \frac{100}{100}$ I tried different varibles for r or the radius. Then found when the areas were at the smallest amount

$$h = \frac{200}{\pi r^2}$$

$$Y = \frac{1}{2} \frac{1}$$

$$h = 200$$
 $\pi 9$
 $= 7.07$

$$h = \frac{200}{\pi r^2} \qquad 2\pi r^2 + 2\pi r \times (\frac{200}{\pi r^2}) = \times$$

$$Y = \text{ aluminar}$$

$$Corr \qquad 2\pi r^2 + 2(\frac{200}{\pi r^2}) = \times$$

$$2\pi r^2 + 2(\frac{200}{\pi r^2}) = \times$$

$$2\pi r^2 + 2(\frac{200}{\pi r^2}) = \times$$

$$2\pi r^2 + 200 = \times$$

$$1 \qquad 6.28 + 400 = 406.28$$

$$2 \qquad 25.12 + 200 = 275.12$$

$$3 \qquad 56.52 + 133 = 189.85$$

Bestsize Cans

The Fresha Drink Company is marketing a new soft drink.

The drink will be sold in a can that holds 200 cm³.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum.

Explain your reasons and show all your calculations

$$V = \pi r^{2}h \qquad 200 = \pi r^{2}h \qquad h = \frac{200}{\pi r^{2}}$$

$$S = 2\pi r^{2} + 2\pi rh$$

$$C = 2\pi r^{2} + 2\pi r^{2}$$

$$S = 2\pi I^2 + 2\pi r \left(\frac{200}{\pi I^2}\right)$$

$$S = 2Tr^{2} + \frac{400 \pi r}{Tr}$$

$$S = 2Tr^{2} + \frac{400}{r}$$

$$|r^{2}3cm|h = \frac{200}{T3^{2}} = \frac{200}{28} = 7 |h^{2}7cm|$$

Bestsize Cans (continued)

Volume =
$$\pi r^2 h = 200$$

$$h = \frac{200}{\pi r^2}$$

The drink will be sold in a can that holds 200 cm³.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum.

Explain your reasons and show all your calculations

Calculations $SA = 12\pi r^{2} + 2\pi rh = 2\pi r^{2} + 2\pi r \times 200 = 2\pi r^{2} + 400$ $Y = 2 SA - 8\pi + 400 = 225.13 \cdot h = 200 = 15.91$ $Y = 2.5 SA = 2\pi 25 + 400 = 199.27$ $Y = 3 SA = 18\pi + 400 = 189.88 \cdot h = 7.07$ $Y = 3.5 SA = 24.5\pi + 400 = 191.25$ $Y = 3.5 SA = 24.5\pi + 400 = 191.25$ $Y = 3.5 SA = 24.5\pi + 400 = 191.25$ $Y = 3.5 SA = 24.5\pi + 400 = 191.25$

The drink will be sold in a can that holds 200 cm³.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum.

Explain your reasons and show all your calculations

V=

L.	Co	l culations			
	Volume =	200 cm	$3 = \pi r^2 h$	Surface Area = 2 TT r2 + 2TT rh	
700 = 1			h = 63.661977		_
re2	h=16	2×2=4	4×16=64	2T(2)2+2T(32) \$\frac{1}{2}\$ 25.1 + 201.1\$\approx\$ 226.2	•
V=1	, h= 64	x =	1×64=64.	2π(1)2+2+ (64) ~6,3+ 402.1× 408.4	;
r=3	h=74	3×3=9	9×94=64	$2\pi \left(3\right)^{2} + 2\pi \left(\frac{64}{3}\right) \approx 56.5 + 134.0 \approx 190.$	5
_	So, ra	dius large	-> surface	area smaller! Now try find largest	
	radius	(smalkst	surface area	a)	
r=8	, h=1		64 x 1 = 69 it What!?	$2\pi(8)^{2}+2\pi(8)\approx 402.1+50.2\approx$ 452.3	
Y=5,	h=2,56	5x5=25	254256=64	2π(5)2+ 2π (12.8) 157.1 + 80.4 1	
Cop	k = 4 byright © 2011 by M source Service, All r	athematics Assessme	16×4 = 64	$2\pi (4)^{2}$, $2\pi (16) \approx 237.5$	R 2
7=6, h=	1.	•	36× = 64	$2\pi \left(6\right)^{2} + 2\pi \left(\frac{32}{3}\right) \stackrel{?}{\sim} 226 + 61 \stackrel{?}{\sim} 293$	

Bestsize Cans (continued)

I kind of did a "guess and check" problem solving method.

At first, I thought that the larger the radius, the smaller the surface area. The goal of this task is to find the smaller the surface area for a can that can hold 200 cm² in volume.

After many "guess and check" trials, I came to a conclusion that a radius of 3 and a height of 7½ in a can, can have a volume of about 201. That means it can hold

200 cm² of liquid. And, it uses the smallest amount of alvumm possible, when is about 190,5 cm².

The drink will be sold in a can that holds 200 cm³.

2×7×2×5×5×5

10×10×10

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum.

Explain your reasons and show all your calculations

$$\begin{array}{ll}
\text{If } r=2 & 200 = \pi r^2 h \Rightarrow h = \frac{200}{\pi r^2} \\
\text{SA} = 2\pi (2)^2 + \frac{400}{2} = 8\pi + 200 \approx 225.13274 & \text{SA} = 2\pi r^2 + 2\pi r h \\
\text{If } r=3 & \text{SA} = 2\pi r^2 + 2\pi r (\frac{200}{\pi r^2}) \\
\text{SA} = 2\pi (3)^2 + \frac{400}{3} = 18\pi + \frac{400}{3} \approx 189.882 & \text{SA} = 2\pi r^2 + \frac{400}{r} \\
\text{If } r=4 & \\
\text{SA} = 2\pi (4)^2 + \frac{400}{4} = 32\pi + 100 \approx 200.530 \\
\text{If } r=3.1 & \text{SA} = 2\pi (3.1)^2 + \frac{400}{3.1} \approx 189.4114
\end{array}$$

3estsize Cans (continued)

$(f_1r=3.2)$ $SA=2\pi(3.2)^2+400/3.2=189.34$
$[f = 3.3]$ $5A = 2n(3.3)^2 + 400/3.3 = 189.636.$
h: 200 = 6.217
Radius = 3.2
Height = 6.217