

(Tir2)h = 200cm³/
2Tr2+2Tirxh = area of 1
aluminium

The Fresha Drink Company is marketing a new soft drink.

The drink will be sold in a can that holds 200 cm³.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum. (advs = 3 height = 7.07

Explain your reasons and show all your calculations

The volume of the drink's formula is

(Tr2) h = 200c m3. The area of gluminium
is 211r2 + 211rxh. The heights formula
is 300. By using the formula of
211r2 + 100 I tried different varibles for
r or the radius. Then found when the 2
areas were at the smallest amount.

$$h = \frac{200}{\pi r^2}$$

 $x = \frac{200}{\pi r^2}$
 $x = \frac{200}{\pi r^2}$
 $x = \frac{200}{\pi r^2}$

$$h = \frac{200}{\pi 9}$$

$$h = \frac{200}{\pi r^2}$$
 $2\pi r^2 + 2\pi r \times (\frac{200}{\pi r^2}) = \times$
 $X = \text{ of a for a luminum }$ $2\pi r^2 + 2(\frac{200}{r^2}) = \times$
 $2\pi r^2 + \frac{400}{r^2} = \times$

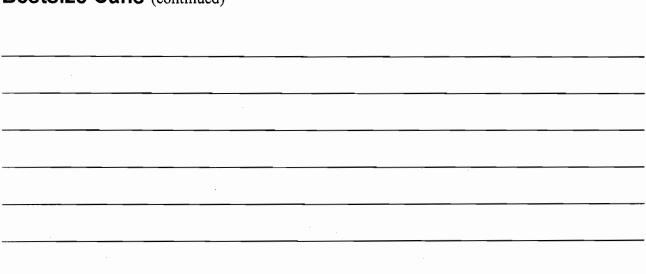
Bestsize Cans

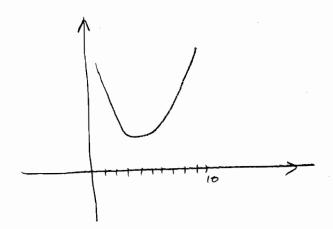
The Fresha Drink Company is marketing a new soft drink.

The drink will be sold in a can that holds 200 cm³.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum.


Explain your reasons and show all your calculations


Copyright © 2011 by Mathematics Assessment Resource Service. All rights reserved.

Page $10\,$

CCR 2

Bestsize Cans (continued)

Volume =
$$\pi r^2 h = 200$$
.
$$h = \frac{200}{\pi r}$$

The Fresha Drink Company is marketing a new soft drink.

The drink will be sold in a can that holds 200 cm³.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum.

Explain your reasons and show all your calculations

Calculations:
$$S.A = |2\pi r^{2} + 2\pi rh| = 2\pi r^{2} + 2\pi r \cdot 200 = 2\pi r^{2} + 400$$

$$r = 2 \cdot 3A = 8\pi + 400 = 225 \cdot 13 \quad h = 200 = 15.91$$

$$r = 2 \cdot 5 \cdot 5A = 2\pi 25 \cdot 400 = 199 \cdot 27 \quad 27$$

$$r = 3 \cdot 5A = 18\pi + 400 = 189 \cdot 88 \quad h = 7.07$$

$$r = 3.5 \cdot 5A = 24.5\pi + 400 = 191 \cdot 25 \quad 27$$

$$Smallest = 5.4 \cdot 15 \cdot 15 \cdot 17 \cdot 17 \cdot 17 \cdot 17$$

The Fresha Drink Company is marketing a new soft drink.

The drink will be sold in a can that holds 200 cm³.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum.

Explain your reasons and show all your calculations

Volume = $200 \text{ cm}^3 = \pi r^2 \text{ h}$ Surface Area = $2\pi r^2 + 2\pi r \text{ h}$ 200 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 21 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 22 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 23 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 24 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 25 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 26 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 27 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 28 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 29 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 20 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 20 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 21 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 22 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 23 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h} \approx 63.66197724$ 24 = $r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi \text{IR}} = r^2 \text{h}$ $\Rightarrow \frac{49773}{\pi$

0

Bestsize Cans (continued)

Explanation

I kind of did a "guess and check" problem solving method.

At first, I thought that the larger the radius, the smaller the Aurface area. The goal of this task is to find the smallert rurface area for a can that can hold 200 cm³ in volvme.

After many "guess and check" trials, I came to a conclusion that a radius of 3 and a height of 7½ lin a can, can have a volume of about 201. That means it can hold

200 cm³ of liquid. And, it uses the smallest amount of alvuirum possible, which is about 190,5, cm².

Bestsize Cans

T5

The Fresha Drink Company is marketing a new soft drink.

The drink will be sold in a can that holds 200 cm³.

2×2×2×5×5×5

10×10×10

4×25×10 100 100 250 600

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum.

Explain your reasons and show all your calculations

Bestsize Cans (continued)

 $(F_{1}r = 3.2)$ $SA = 2\pi(3.2)^{2} + 400/3.2 = 189.34$ $1f_{1}r = 3.3$ $SA = 2n(3.2)^{2} + 400/3.3 = 189.636$. 2 $1f_{1}r = 200$ $f_{1}r = 6.217$ $1f_{2}r = 6.217$ $1f_{2}r = 6.217$ $1f_{2}r = 6.217$