The Fresha Drink Company is marketing a new soft drink.

The drink will be sold in a can that holds 200 cm³.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm³ and uses the smallest amount of aluminum. \(\text{radius} = 3 \text{ cm}, \text{ height} = 7.09 \text{ cm} \)

Explain your reasons and show all your calculations.

The volume of the drink's formula is

\[
(\pi r^2)h = 200 \text{ cm}^3
\]

The area of aluminum is \(2\pi r^2 + 2\pi rh\). The heights formula is \(\frac{200}{\pi r^2}\).

By using the formula of \(2\pi r^2 + \frac{100}{r}\), I tried different variables for \(r\) or the radius. Then found when the areas were at the smallest amount.
Bestsize Cans (continued)

\[h = \frac{200}{\pi r^2} \]

\[X = \text{area of aluminum can} \]

\[2\pi r^2 + 2\pi r \times \left(\frac{200}{4\pi r^2} \right) = X \]

\[2\pi r^2 \times 2 (\frac{200}{r}) = X \]

\[2\pi r^2 \times \frac{400}{r} = X \]

\[h = \frac{200}{\pi 9} \]

\[= 7.07 \]

\[r \quad X \]

\[1 \quad 6.28 + 400 = 406.28 \]

\[2 \quad 25.12 + 200 = 225.12 \checkmark \]

\[3 \quad 56.52 + 133 = 189.85 \checkmark \]

\[4 \quad 100.48 + 100 = 200.48 \checkmark \]

\[5 \quad 157 + 80 = 237 \]

\[2.5 \quad 39.27 + 160 = 199.27 \checkmark \]

\[3.5 \quad 76.97 + 114 = 191.25 \]

10
The Fresha Drink Company is marketing a new soft drink.

The drink will be sold in a can that holds 200 cm³.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm³ and uses the smallest amount of aluminum.

Explain your reasons and show all your calculations

\[V = \pi r^2 h \]
\[200 = \pi r^2 h \]
\[h = \frac{200}{\pi r^2} \]

\[S = 2\pi r^2 + 2\pi rh \]
\[S = 2\pi r^2 + 2\pi r \left(\frac{200}{\pi r^2} \right) \]
\[S = 2\pi r^2 + \frac{400\pi}{r} \]

\[r = 3 \text{ cm} \]
\[h = \frac{200}{\pi \cdot 3} = \frac{200}{9.42} = 7 \text{ cm} \]

39.25
Bestsize Cans (continued)

<table>
<thead>
<tr>
<th>s</th>
<th>406</th>
<th>225</th>
<th>190</th>
<th>200</th>
<th>237</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
The Fresha Drink Company is marketing a new soft drink.

The drink will be sold in a can that holds 200 cm³.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm³ and uses the smallest amount of aluminum.

Explain your reasons and show all your calculations.

Calculations:

\[
SA = 2\pi r^2 + 2\pi rh
\]

\[
2\pi r^2 + 2\pi h 200 = 2\pi r^2 + 400
\]

\[
\frac{400}{h} = 225.13 \checkmark \quad h = \frac{200}{\pi r^2}
\]

\[
r = 2 \quad SA = 8\pi + 400 = 225.13 \checkmark
\]

\[
r = 2.5 \quad SA = 20.78 + 400 = 199.27 \checkmark
\]

\[
r = 3 \quad SA = 18\pi + 400 = 189.88 \checkmark \quad h = \frac{200}{\pi r^2} = 7.07
\]

\[
r = 3.5 \quad SA = 24.6\pi + \frac{400}{3.5} = 191.25 \checkmark
\]

Smallest SA is for \(r = 3 \) and \(h = 7.07 \).
The Fresha Drink Company is marketing a new soft drink.

The drink will be sold in a can that holds 200 cm3.

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm3 and uses the smallest amount of aluminum.

Bestsize Cans

![Cylinder Diagram]

Calculations:

Volume = $200 \text{ cm}^3 = \pi r^2 h$

Surface Area = $2\pi r^2 + 2\pi rh$

\[
\frac{200}{\pi} = r^2 h \Rightarrow \frac{200\pi}{r^2} = h \approx 63.66197724
\]

\[
\begin{align*}
\text{r=2, } h=16 & \quad 2\times2=4 \quad 9\times16=64 \\
\text{r=1, } h=64 & \quad 1\times1=1 \quad 1\times64=64 \\
\text{r=3, } h=7\frac{1}{3} & \quad 3\times9=27 \quad 9\times9\frac{1}{3}=64
\end{align*}
\]

\[
2\pi(2)^2 + 2\pi(32) \approx 25.1 + 201.1 \approx 226.2
\]

\[
2\pi(1)^2 + 2\pi(64) \approx 6.3 + 402.1 \approx 408.4
\]

\[
2\pi(3)^2 + 2\pi\left(\frac{69}{3}\right) \approx 56.5 + 134.0 \approx 190.5
\]

So, radius larger \Rightarrow surface area smaller! Now, try find largest

radius (smallest surface area)

\[
\begin{align*}
\text{r=8, } h=1 & \quad 8\times8=64 \quad 64\times1=64 \\
\text{r=5, } h=256 & \quad 5\times5=25 \quad 25\times25=64 \\
\text{r=4, } h=4 & \quad 4\times4=16 \quad 16\times4=64 \\
\text{r=6, } h=\frac{16}{1} & \quad 6\times6=36 \quad 36\times\frac{16}{1}=64
\end{align*}
\]

\[
\begin{align*}
2\pi(8)^2 + 2\pi(8) & \approx 402.1 + 50.2 \approx 452.3 \\
2\pi(5)^2 + 2\pi(12.8) & \approx 157.1 + 80.4 \approx 237.5 \\
2\pi(4)^2 + 2\pi(16) & \approx 100.5 + 100.5 \approx 201
\end{align*}
\]
Bestsize Cans (continued)

I kind of did a "guess and check" problem solving method. At first, I thought that the larger the radius, the smaller the surface area. The goal of this task is to find the smallest surface area for a can that can hold 200 cm3 in volume. After many "guess and check" trials, I came to a conclusion that a radius of $3\sqrt{2}$ and a height of $7\sqrt{2}$ in a can can have a volume of about 201. That means it can hold 200 cm3 of liquid. And, it uses the smallest amount of aluminum possible, which is about 190.5 cm2.
The Fresha Drink Company is marketing a new soft drink.

The drink will be sold in a can that holds 200 cm\(^3\).

In order to keep costs low, the company wants to use the smallest amount of aluminum.

Find the radius and height of a cylindrical can which holds 200 cm\(^3\) and uses the smallest amount of aluminum.

Explain your reasons and show all your calculations

1. If \(r = 2 \)
 \[
 \text{SA} = 2\pi r^2 + \frac{400}{r} = 8\pi + 200 \approx 225.13274, \quad \text{SA} = 2\pi r^2 + 2\pi rh
 \]
 \[200 = \pi r^2 h \Rightarrow h = \frac{200}{\pi r^2} \]

2. If \(r = 3 \)
 \[
 \text{SA} = 2\pi (3)^2 + \frac{400}{3} = 18\pi + \frac{400}{3} \approx 189.882, \quad \text{SA} = 2\pi r^2 + \frac{400}{r}
 \]

3. If \(r = 4 \)
 \[
 \text{SA} = 2\pi (4)^2 + \frac{400}{4} > 32\pi + 100 \approx 200.530
 \]

4. If \(r = 3.1 \)
 \[
 \text{SA} = 2\pi (3.1)^2 + \frac{400}{3.1} \approx 189.4114
 \]
Bestsize Cans (continued)

\[r = 3.2 \quad \text{SA} = 2\pi(3.2)^2 + 400/3.2 = 189.34 \]

\[r = 3.3 \quad \text{SA} = 2\pi(3.3)^2 + 400/3.3 = 189.636 \]

\[h = \frac{100}{\pi r^2} \approx 6.217 \]

Radius = 3.2 \quad \checkmark

Height = 6.217 \quad \checkmark