


How many blocks of each kind will pattern #n need? Grey =  $4n^2 + (2n+1)^2 = 8n^2 + 4n + 1$ While -  $4n(2n+1) = 8n^2 + 4n$ 

Which pattern has a total of 841 grey blocks?  

$$n = 10$$
 while  $= 8(10)^2 + 4(10)$   
 $= 800 + 40$   
How many white blocks has that pattern?  
 $841 - 1 = 840$ 

10 0 2

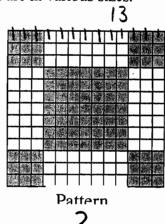
840 while blocks

Explain your work and show your calculations.

Taking into account the # of white and grey blocks in the diagrams above, as well as the pattern numbers of the diagrams. I used inductive reasoning to create the formula groy = 4(n2)+(n+n+1)2 - 8n+4n+1 and white = 4(n1(n+n+1)=8n2+4n) where n= pattern number. I then substituted 841 for grey and isolated n using factoring (shown) an next page. The pattern number is 10. Since the number of grey blocks is I more than the number of white blocks in a pattern if pattern # 10 has 841 grey blocks, pattern # 10 also has 840 white blocks.

## Please continue your work on the page opposite


GREY - WHITE = difference.
$$(8n^2+4n+1)-(8n^2+4n)=1$$


$$\begin{array}{rr} 841 &= 8n^2 + 4n + 1 \\ -841 & -841 \end{array}$$

2

The blocks are in different shades to make patterns that are in various sizes.







How many blocks of each kind will pattern #n need?

White: 8n2+4n (Grey: 8n2+4n+)

Which pattern has a total of 841 grey blocks?

|         | /  | 2 |
|---------|----|---|
| Pattern | 10 | 2 |

How many white blocks has that pattern?

Explain your work and show your calculations.

| 840 | /_ |
|-----|----|
|     |    |

on page 9

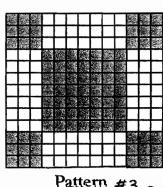
$$(4n+1)(4n+1)$$
  $(2n+1)(2n+1)$   
 $16n^2 + 4n + 4n + 1$   $4n^2 + 2n + 2n + 1$   
 $16n^2 + 8n + 1$   $4n^2 + 4n + 1$   
 $16n^2 + 8n + 1 - 4n^2 - 4n^2 - 4n$ 

$$16n^2 + 8n + 1 - 4n^2 - 4n^2 - 4n$$
  
 $8n^2 + 4n$ 

$$841 = 8n^2 + 4n + 1$$
  
 $n = 10$ 

(1)

## Sidewalk Stones


In Prague some sidewalks are made of small square blocks of stone.

The blocks are in different shades to make patterns that are in various sizes.

4n2+ (1+2n)

Pattern#/ 22

Pattern #2 41



Pattern #3

n.(2n+1)n4.3n.4

How many blocks of each kind will pattern #n need?

Which pattern has a total of 841 grey blocks?

How many white blocks has that pattern?

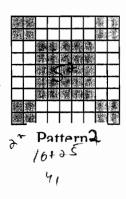
10/2 840/1

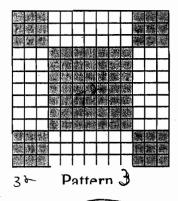
Explain your work and show your calculations.

 $4n^2 + (1+2n)^2 = \# of grey blocks$   $n \cdot (2n+1) \cdot 4 \cdot \# of white blocks$ 

 $4(20)^{2} + (1+2(20))^{2} - 841$ 

10.(2(10+1).4=840


For the shaded 4n2 is the shaded corners. The for corners


# Please continue your work on the page opposite

the center shaded area is one greater than the pattern number multiplied by 2

The area of the white squares is in 4 areas. The equation for one of the areas is  $n \cdot (2n+1)$  n = the height and 2n+1 equals the length. Multiply that by 4 because there are four of them.

The blocks are in different shades to make patterns that are in various sizes.





How many blocks of each kind will pattern #n, need?  $4n+\lambda - 7 (8n^{3}+4n+1)$ block:  $4n^{3}+(2n+1)^{3}-7(2n+1)$ Which pattern has a total of 841 grey-blocks? lthpattern

 $\frac{16n^{3}+8n+1=841}{16n^{3}+8n=105}$  How many white blocks has that pattern?  $\frac{2}{3}n^{3}+n=105=0$ 

8(7) +4(7) = 8(49) + 28 = 392+28 = 420

Explain your work and show your calculations

In the first Q, I realized that pattern # relates to the corner block. I saw that In pattern 1, the corner black was equal to patternt n multiplied by itself, So, it was 12 for 1, 22 for a, 3 for 3 soforth Then I saw that the centergrouped black blocks were ever odd H squared except 1.50 I gurckly related the corner block to the center group. I saw that it was (2nt)? (Continued Please continue your work on the page opposite

idewalk Stones (continued)
$$\frac{105}{840}$$

$$\frac{3}{840}$$

$$\frac{3}{840}$$

$$\frac{3}{840}$$

$$\frac{3}{840}$$

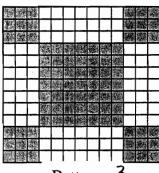
$$\frac{3}{840}$$

$$\frac{3}{840}$$

$$\frac{3}{840}$$

$$\frac{3}{40}$$


$$\frac{1}{4}$$


$$\frac{1}{$$

I added them together were which was 4n + (2nt)? For the White blocks, I saw that they formed 4 rectangles I found that the wedth came from the pattern # and the length came from the sort of the # of black blocks in the center, PatternH an is n, syrtof Hof black blacks in conter's 2n+1. There are 4 rectangles. So 4x (ant) xn) is Hot white blocks. This simplifies to 800 + 4/n. 2

The blocks are in different shades to make patterns that are in various sizes.







How many blocks of each kind will pattern #n need?  

$$grey = 4n^2 + (2n+1)^2$$
white =  $8n^2 + 4n$ 
Which pattern has a total of 841 grey blocks?

white 
$$= 8n^2 + 4n$$
 V

How many white blocks has that pattern?

|        |      | 3  |
|--------|------|----|
|        | /    | 2  |
| i<br>I | # 10 | /0 |
|        |      |    |

Explain your work and show your calculations.

# Please continue your work on the page opposite

$$\begin{array}{rcl}
2n^{2} + n & -210 = 0 \\
N & = & -12 & \sqrt{1+1680} \\
V & & & \\
N & = & -1 & + & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 & \text{or} & - & + \\
N & = & 10 &$$