

## **College and Career Readiness Mathematics**

Scoring Rubric (Draft)

These tests were developed with support from the Bill and Melinda Gates Foundation

| Sho      | Short Tasks                                                 |        |  |  |  |
|----------|-------------------------------------------------------------|--------|--|--|--|
| Q        | Answer                                                      | Points |  |  |  |
| 1        | x = 1  or  -4                                               | 1      |  |  |  |
| 2        | (x=7)                                                       | 1      |  |  |  |
|          | length 12 cm                                                |        |  |  |  |
|          | width 5 cm                                                  |        |  |  |  |
| 3        | 17 or –17                                                   | 1      |  |  |  |
| <u> </u> |                                                             | 1      |  |  |  |
| 5        | 2x - y = 0                                                  |        |  |  |  |
| 5        | $\frac{8}{14} = \frac{4}{7}$                                | 1      |  |  |  |
| 6        | $1.2.7 \times 104 + 1.2 \times 102$                         | 1      |  |  |  |
|          | $= 2.712 \times 104$                                        |        |  |  |  |
| 7        | a – b                                                       | 1      |  |  |  |
| 8        | x = 32 and $y = 8$                                          | 1      |  |  |  |
| 9        | 3                                                           | 1      |  |  |  |
|          | $\left  \begin{array}{c} -\overline{4} \end{array} \right $ |        |  |  |  |
| 10       | Yellow: 43cm                                                | 1      |  |  |  |
|          | Red: 55cm                                                   |        |  |  |  |
|          | Answer: Red                                                 |        |  |  |  |
|          | Total                                                       | 10     |  |  |  |

|    | Multipl                                  | Multiplying Cells |                        |                |                |           |                | Rub       | oric   |                |
|----|------------------------------------------|-------------------|------------------------|----------------|----------------|-----------|----------------|-----------|--------|----------------|
|    | :                                        |                   |                        |                |                |           |                |           | Points | Section points |
| 1. | Fills in the table correctly:            |                   |                        |                |                |           |                |           |        |                |
|    | Time                                     | 0                 | 20                     | 40             | 60             | 80        | 100            | 120       | 2      |                |
|    | Number<br>of cells                       | 1                 | 2                      | 4              | 8              | 16        | 32             | 64        |        | 2              |
| 2. | Fills in the                             | table co          | orrectly:              |                |                |           |                |           |        |                |
|    | Time                                     | 0                 | 20                     | 40             | 60             | 80        | 100            | 120       |        |                |
|    | Number<br>of cells as<br>power of<br>2   | 2 <sup>0</sup>    | $2^{1}$                | 2 <sup>2</sup> | 2 <sup>3</sup> | 24        | 2 <sup>5</sup> | 26        | 2      | 2              |
| 3. | Gives a co                               | rrect an          | swer: 2 <sup>9</sup> ( | allow 51       | 2)             |           |                |           | 1      |                |
|    | Gives a co<br>3 hours is 9<br>20 minutes | 9 lots of         | 20 minu                | tes and th     | ne power       | of 2 equa | ls the nur     | nber of   | 1      | 2              |
| 4. | Gives a co                               | orrect a          | nswer: 3               | 2768           |                |           |                |           | 1      |                |
|    | Shows con                                | rrect w           | ork such               | as:            |                |           |                |           |        |                |
|    | 5 hours =<br>2 <sup>15</sup>             | 5x3 lot           | s of 20-m              | inutes =       | 15 lots of     | 20-minu   | tes            |           | 1      |                |
|    |                                          |                   |                        |                |                |           |                |           |        | 2              |
| 5. | Gives a co                               |                   |                        |                | tes or 5       | hours 40  | minute         | S         | 1      |                |
|    | Shows con                                |                   |                        | as:            |                |           |                |           |        |                |
|    | $2^{16} = 32768$                         |                   |                        |                |                |           |                |           | 1      |                |
|    | $2^{17} = 65530$                         | $b \times 2 =$    | 131072                 |                |                |           |                |           |        |                |
|    | 17 x 20                                  |                   |                        |                |                |           |                |           |        | 2              |
|    |                                          |                   |                        |                |                |           | Tot            | al Points |        | 10             |

|                   | Sorting Fund                                                                    | Rub                                                                                    | ric                                                                    |                                 |        |                |
|-------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|--------|----------------|
|                   |                                                                                 |                                                                                        |                                                                        |                                 | Points | Section points |
| 1.                | Gives correct answ                                                              |                                                                                        |                                                                        |                                 |        |                |
|                   | Graph                                                                           | Equation                                                                               | Table                                                                  | Rule                            |        |                |
|                   | A                                                                               | С                                                                                      | В                                                                      | А                               |        |                |
|                   | В                                                                               | D                                                                                      | А                                                                      | С                               |        |                |
|                   | С                                                                               | В                                                                                      | С                                                                      | D                               |        |                |
|                   | D                                                                               | А                                                                                      | D                                                                      | В                               | 6      |                |
| 2.<br>(a)         | Gives correct expla<br>Equation C is a qu                                       |                                                                                        | t passes through                                                       | the origin and is               | 1      |                |
|                   | symmetrical abou                                                                | t the y axis, so this                                                                  | . 0                                                                    | 8                               | 1      | 1              |
| (b)               | symmetrical abou<br>Equation D is the                                           | •                                                                                      | is Graph A.                                                            |                                 | 1      | 1              |
| (b)               |                                                                                 | •                                                                                      | is Graph A.                                                            |                                 |        | 1              |
|                   |                                                                                 | equation of a strai                                                                    | is Graph A.<br>Ight line, so this i<br>t passes through                | s Graph B.                      |        |                |
| (b)<br>(c)<br>(d) | Equation D is the<br>Equation B is a qu<br>symmetrical abou<br>Equation A is an | equation of a strai<br>adratic curve that<br>t the x axis, so this<br>inverse (hyperbo | gis Graph A.<br>ght line, so this i<br>t passes through<br>is Graph C. | s Graph B.<br>the origin and is | 1      |                |

|    | Charity Fair                                                                                                                                              | Rut     | oric              |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|
|    |                                                                                                                                                           | Points  | Section<br>points |
| 1. | Gives correct answer: <u>1</u><br>16                                                                                                                      | 1       |                   |
|    | Shows work such as:<br>probability (all red) = $(1/4)^3 = 1/64$                                                                                           | 1       |                   |
|    | probability (all the same color) = $4 \times (1/64) = 1/16$                                                                                               |         | 2                 |
| 2. | Gives correct answer: <b>No</b><br>and<br>May show that:<br>If 16 people play once, they pay 16 x 25¢ = \$4                                               |         |                   |
|    | On average, 1 person wins \$5                                                                                                                             |         |                   |
|    | So the charity loses. $(\$4 - \$5 = -\$1)$                                                                                                                | 2 ft    |                   |
|    | Accept alternative correct reasoning                                                                                                                      |         | 2                 |
| 3. | Suggests changes such as:<br>Change 1                                                                                                                     |         |                   |
|    | Have more colors, say 5.                                                                                                                                  | 1       |                   |
|    | Calculates prob(all the same color) = $5 \times (1/5)^3 = 1/25$<br>States that if 25 people play once, <b>the charity gains</b> . (\$6.25 - \$5 = \$1.25) | 1       | 3                 |
|    | <i>Change 2</i><br>Have <b>more barrels</b> , say 4.                                                                                                      | or<br>1 | or                |
|    | prob(all the same color) = $4 \ge (1/4)^4 = 1/64$<br>If 64 people play, <b>the charity gains.</b> (\$16 - \$5 = \$11)                                     | 1<br>1  | 3                 |
|    | Change 3<br>Increase the price to 50 cents                                                                                                                | or<br>1 | or                |
|    | If 16 people play once, the charity gains. $(\$8 - \$5 = \$3)$<br>Alternatively, decrease the amount won from, say, \$5 to \$3.                           | 1       |                   |
|    | If 16 people play once, the charity gains. $(\$4 - \$3 = \$1)$                                                                                            |         | _                 |
|    |                                                                                                                                                           |         | 3                 |
|    | Total Points                                                                                                                                              | max     | 10                |

|    | Patchw                                                                    | Patchwork                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                    |                                                                             |              |                |
|----|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------|----------------|
|    |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                             | Points       | Section points |
| 1. | Correctly of                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                             |              |                |
|    | Size (n)                                                                  | Number of triangles (t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of squares (s)                                                                                                                                                                                              |                                                                             |              |                |
|    | 1                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                  |                                                                             | 1            |                |
|    | 2                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                  |                                                                             | 2            |                |
|    | 3                                                                         | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                 |                                                                             |              |                |
|    | 4                                                                         | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24                                                                                                                                                                                                                 |                                                                             |              |                |
|    | 5                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40                                                                                                                                                                                                                 |                                                                             |              |                |
|    |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                    | 1                                                                           |              | 3              |
|    | triangles as<br>or From                                                   | n: Each cushion has fou<br>s the size.<br>the table, as the size of the table, as the size of th |                                                                                                                                                                                                                    |                                                                             | 1<br>or<br>1 | 3              |
| 3. | The number<br>multiples<br>or The nu<br>the number                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y 4, then 8, then 12, the                                                                                                                                                                                          | -                                                                           | 1<br>or      |                |
|    | Explanatio<br>Stepwise r                                                  | mber of squares + the n<br>r of squares for the next<br>ebraic rule: $s = 2n(n - 1)$<br>ons relating to the cushio<br>ule: Each triangle of one<br>rule: Each cushion has for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or equivalent algebraic<br>n design, such as the fol<br>size becomes a square                                                                                                                                      | rule.<br>lowing.<br>in the next size. <b>or</b>                             | 1<br>or<br>2 |                |
|    | Explanatio<br>Stepwise r<br>Algebraic                                     | r of squares for the next<br>ebraic rule: $s = 2n(n - 1)$<br>ons relating to the cushio<br>ule: Each triangle of one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | size. e.g.: $16 + 24 = 40$<br>or equivalent algebraic<br>n design, such as the following size becomes a square<br>our sections: if we put the                                                                      | rule.<br>lowing.<br>in the next size. <b>or</b>                             | 1<br>or<br>2 | 3              |
| 4. | Explanation<br>Stepwise r<br>Algebraic<br>together, w<br>Stepwise r<br>or | r of squares for the next<br>ebraic rule: $s = 2n(n - 1)$<br>ons relating to the cushio<br>ule: Each triangle of one<br>rule: Each cushion has for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | size. e.g.: $16 + 24 = 40$<br>or equivalent algebraic<br>n design, such as the foll<br>e size becomes a square<br>our sections: if we put to<br>ze <i>n</i> by ( <i>n</i> - 1).<br>to find that when <i>s</i> = 18 | rule.<br>lowing.<br>in the next size. <b>or</b><br>wo sections<br>0, t = 40 | 1<br>or<br>2 | 3              |

| Sq | Square                                                |           |                |  |
|----|-------------------------------------------------------|-----------|----------------|--|
|    |                                                       | Points    | Section points |  |
| 1  | Gives correct answer: 5                               | 3         |                |  |
|    | Uses the Pythagorean correctly, but incorrect answer. | (2)       |                |  |
|    | Attempts to use the Pythagorean Rule                  | (1)       | 3              |  |
| 2  | Gives correct answer: -3/4                            | 2         | 2              |  |
| 3. | Gives correct explanation such as:                    |           |                |  |
|    | The slope of $DA = 4/3 =$ slope of CB                 |           |                |  |
|    | The slope of $AB = -3/4$                              |           |                |  |
|    | Therefore the sides of the shape are perpendicular    |           |                |  |
|    | The lengths of AB and AD are 5                        | 5         |                |  |
|    | Therefore the shape is a square.                      |           |                |  |
|    | Partial credits                                       | (4)       |                |  |
|    | For some correct work.                                | to<br>(1) | 5              |  |
|    | Total Points                                          |           | 10             |  |

| Circles and Squares                                                                                                                                 | Ru     | bric           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|
|                                                                                                                                                     | Points | Section points |
| Gives correct answer: The ratio of the areas of the two squares is 1:2                                                                              | 1      |                |
| Shows correct work such as:<br>Draws construction lines from the center of the circle to the vertices of the<br>small square.                       |        |                |
| If the large square has side of length x, then, using the Pythagorean Theorem gives the length of the sides of the small square are $\sqrt{2x/2}$ . | 4      |                |
| The area of the large square is $x^2$ .                                                                                                             |        |                |
| The area of the small square is $x^2/2$                                                                                                             |        |                |
| Accept alternative methods.                                                                                                                         |        |                |
| Gives correct answer: The ratio of the two areas is 1:2                                                                                             | 1      |                |
| If a second circle is inscribed in the smaller square, using the Pythagorean Theorem gives the radius of the small square is $\sqrt{2x/4}$          |        |                |
| The area of the large circle is $\pi(x/2)^2 = \pi x^2/4$                                                                                            | 4      |                |
| The area of the small circle is $\pi(\sqrt{2x/4})^2 = \pi 2x^2/16 = \pi x^2/8$                                                                      |        |                |
| Accept alternative methods.                                                                                                                         |        | 10             |
| Total Points                                                                                                                                        |        | 10             |

|    | Fun Size Can                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rub    | oric                   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Points | Sectio<br>n poin<br>ts |
| 1. | Gives correct answers: 15.9 - 16.0 cm and 2.5 - 2.6 cm.                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 x 1  |                        |
|    | Shows correct work such as:<br>Substitutes in the formula $\mathbf{V} = \pi \mathbf{r}^2 \mathbf{h}$ to find the height of the can with radius 2cm and<br>Substitutes in the formula $\mathbf{V} = \pi \mathbf{r}^2 \mathbf{h}$ to find the height of the can with radius 5cm.                                                                                                                                                                                            | 1      |                        |
|    | States that the can with radius 2 cm is <b>easy to hold</b> or <b>unstable</b> or <b>tall</b> and <b>thin:</b> the can with radius 5 cm is <b>difficult to hold</b> or <b>drink from</b> or <b>short</b> and <b>fat</b> or equivalent.                                                                                                                                                                                                                                    | 1      | 4                      |
| 2. | Gives correct answers: 224.9/226.2//72 $\pi$ cm <sup>2</sup> 235.6/239/75 $\pi$ cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                           | 1      |                        |
|    | Uses the formula $S = 2\pi r^2 + 2\pi rh$ to find the surface areas of cylinders with radii 2cm and 5cm.                                                                                                                                                                                                                                                                                                                                                                  | 1      |                        |
|    | Decides to find the surface area of other cylinders.<br>Correctly finds the height and surface area of a cylinders with radii between<br>2 cm and 5 cm.<br>$\mathbf{r} = 3$ , $\mathbf{h} = 7.1/7$ , $\mathbf{A} \approx 190.4$ cm <sup>2</sup> If graph drawn allow<br>$\mathbf{r} = 4$ , $\mathbf{h} = 4.0$ , $\mathbf{A} \approx 201.1$ cm <sup>2</sup> point for values plotted.<br>States that from these results it appears that the <b>minimum</b> surface area is | 1      | 2                      |
|    | when the radius is <b>about 3 cm</b> .<br>Finds surface areas of cylinders with radii around $r = 3$ . e.g.<br>$r= 2.5, h = 10.2, A = 199.5 \text{ cm}^2$ Allow a point for each correct area<br>$r= 3.5, h = 5.2, A = 191.3 \text{ cm}^2$                                                                                                                                                                                                                                | 1      |                        |
|    | States that from calculations, or a graph of r/A (or h /A), the <b>minimum</b> surface area has radius 3 cm, height 7 cm.                                                                                                                                                                                                                                                                                                                                                 | 1      | 4                      |
|    | Total Points                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 10                     |

| Μυ | Iltiple Solutions                                                         | Ru     | bric              |
|----|---------------------------------------------------------------------------|--------|-------------------|
|    |                                                                           | Points | Section<br>points |
| 1. | Gives correct answers:                                                    |        |                   |
|    | a: ± 11                                                                   | 7 x 1  |                   |
|    | b: <b>0, 1</b>                                                            | ,      |                   |
|    | c: any values between <b>0 and 1</b>                                      |        |                   |
|    | d: 0, 1                                                                   |        |                   |
|    | e: any value $\geq$ -0.3947                                               |        |                   |
|    | f: any value less than 1 except 0                                         |        |                   |
|    | g: any positive value                                                     |        | 7                 |
| 2. | Gives correct answers with reasons such as:                               |        |                   |
| a. | $x^2 = 121$ and $x^2 = x$<br>These are quadratic equations with two roots | 1      |                   |
| b. | $(x-1)(5x^4-7x^3+x) = 0$<br>5 solutions                                   | 1      |                   |
| c. | Gives two of:                                                             |        |                   |
|    | $x^2 < x, 1776x + 1066 \ge 365, x^2 > x^3,  x  > x$                       | 1      | 3                 |
|    | Total Points                                                              |        | 10                |

| t Buy Tickets                                                       |                                                     |                                          | Ru         | bric         |
|---------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------|------------|--------------|
|                                                                     |                                                     |                                          | Points     | Sect<br>poin |
| Shows correct reason<br>May solve using alge                        | -                                                   | such as the following:                   |            |              |
| Sure Print: The cost f                                              | or n tickets in dollar                              | s is $C = 2n/25$                         | 2          |              |
| Best print: $C = 10 + r$                                            | n/25                                                |                                          | 2          |              |
| Method 1: May draw                                                  | graphs and find the                                 | point of intersection, $(n = 250)$ .     | 4          |              |
| Method 2 (algebraic)                                                |                                                     |                                          | or         |              |
| When the two costs a                                                | re equal $2n/25 = 10$                               | ) + n/25                                 |            |              |
|                                                                     | n = 25                                              | 0                                        | 4          |              |
| Shows that when $n < When n > 250 Post P$                           |                                                     | eaper                                    | 2          | 1            |
| When $n > 250$ Best P                                               | -                                                   |                                          | or         | 0            |
| <i>Or May decide to sol</i> <sup>•</sup><br>Decides to list costs f |                                                     | s of tickets.                            | 2          |              |
| Number of tickets                                                   | Sure Print                                          | Best Print                               |            |              |
| 50                                                                  | 4                                                   | 12                                       |            |              |
| 100                                                                 | 8                                                   | 14                                       | 5          |              |
| 150                                                                 | 12                                                  | 16                                       |            |              |
|                                                                     | 16                                                  | 18                                       |            |              |
| 200                                                                 | 10                                                  | 18                                       |            |              |
| 200<br>250                                                          | 20                                                  | 20                                       |            |              |
|                                                                     |                                                     |                                          |            |              |
| 250<br>300                                                          | 20<br>24                                            | 20                                       | 1          |              |
| 250<br>300<br>States that the lists sh<br>States that when n < 2    | 20 $24$ ow that when n = 25 $250$ Sure Print is che | 20       23       50 the costs are equal | 1          |              |
| 250<br>300                                                          | 20 $24$ ow that when n = 25 $250$ Sure Print is che | 20       23       50 the costs are equal | 1<br>2 x 1 | 1            |

| Propane Tanks                                                                                           | Ru     | bric           |
|---------------------------------------------------------------------------------------------------------|--------|----------------|
|                                                                                                         | Points | Section points |
| Gives correct answers and shows correct reasoning such as:                                              |        |                |
| The approximate value for the radius of the new tank is 4 feet.                                         | 1      |                |
| For the existing tank                                                                                   |        |                |
| The volume of the cylinder is 283 or $90\pi$                                                            | 2      |                |
| The volume of the sphere is 113 or $36\pi$                                                              | 2      |                |
| The total volume is 396 or $126\pi$                                                                     | 1      |                |
| For the new tank the volume $V = \pi r^2 h + 4\pi r^3 / 3 = 10\pi r^2 + 4\pi r^3 / 3 = 2 \times 126\pi$ |        |                |
| $10r^2 + 4r^3/3 = 252$                                                                                  | 2      |                |
| Tries different values for r                                                                            |        |                |
| When $r = 4$ , $V = 245.3$                                                                              |        |                |
| When $r = 5$ , $V = 416.6$                                                                              |        |                |
| When $r = 4.1$ , $V = 259.9$                                                                            | 2      |                |
| Award process points if numerical errors are made.                                                      |        | 10             |
| Total Points                                                                                            | ;      | 10             |