Middle School Mathematics

Time Allowed
Section A - 40 minutes; Section B - 40 minutes

These tasks give you a chance to show what you know and how you reason, and to solve mathematical problems.

Please show your work and reasoning in the spaces provided. Explain any assumptions you make.

Try as many tasks as you can in the time given. If you get stuck on a task, move on to the next task.

Name: ___ Male Female
School: _______________________________ City: _____________
Teacher: ______________________________ Grade: _____________
Date: _______________________________

Do not write in the box below:

<table>
<thead>
<tr>
<th>MS-6</th>
<th>Short Tasks</th>
<th>Meal Out</th>
<th>Photographs</th>
<th>How Old Are They?</th>
<th>Jane’s TV</th>
<th>Lottery</th>
<th>Roman Mosaic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These tests were developed with support from the Bill and Melinda Gates Foundation
Section A - 40 minutes
Short Tasks

1. The price of a cycle is reduced by 25 per cent. The new price is reduced by a further 20 per cent. Find the single reduction the two reductions together are equal to.

2. Draw a circle around the expression which is greatest when n is a negative number.

\[
\frac{n}{2}, \quad \frac{2}{n}, \quad n^2, \quad 2n, \quad n - 2
\]

3. Use a calculator to find the value of

\[
\sqrt{(5.4(5.4 - 4.8))(5.4 - 3.4)(5.4 - 2.6)}
\]

Give your answer correct to one decimal place.

4. On this diagram label another angle whose size is 80°.

5. Joe has a bag containing 8 red sweets, 9 yellow ones and 11 green. He likes red sweets best.

He takes out a sweet and eats it, then, he takes out a second sweet. What is the probability that both the sweets are red?
Meal Out

Ten friends go out for a meal.

Some friends have three-course meals and the rest have two-course meals.

The bill for all 10 meals is $141 dollars.

The number of people who have three-course meals is x.

1. One of these equations can be solved to find the correct value of x.

\[15x + 12x = 141 \]
\[15x + 12(x - 10) = 141 \]
\[15x + 12(10 - x) = 141 \]
\[(15 + 12)x = 141 \]
\[15x + 12y = 141 \]

Which is the correct equation?

2. Solve the equation and find the number of people who had three-course meals and the number of people who had two-course meals.
 Show how you figured it out, and show that you have tested your answers to see they are correct.

Dinner Menu

Three-course meal
$15

Two-course meal
$12

See our delicious choices overleaf!
A photographer wants to print a photograph and two smaller copies on the same rectangular sheet of paper. The photograph is 4 inches wide and 6 inches high.

Here are two ways he could do it. (Note: the diagrams are not drawn to actual size.)

1. Find the measurements of the small photographs for each arrangement. Show your calculations and explain how you figured it out.

Diagram 1

Diagram 2
2. Find the size of the sheet of paper for each arrangement.

Diagram 1

The measurements of the sheet of paper are ___________ wide and ___________ high.

Diagram 2

The measurements of the sheet of paper are ___________ wide and ___________ high.
How Old Are They?

Will is \(w \) years old.

Ben is 3 years older.

1. Write an expression, in terms of \(w \), for Ben’s age.
 \[
 \text{Ben's age} = w + 3
 \]

Jan is twice as old as Ben.

2. Write an expression, in terms of \(w \), for Jan’s age.
 \[
 \text{Jan's age} = 2(w + 3)
 \]

If you add together the ages of Will, Ben and Jan the total comes to 41 years.

3. Form an equation and solve it to work out how old Will, Ben and Jan are.
 \[
 \begin{align*}
 \text{Will is } & \quad \text{years old} \\
 \text{Ben is } & \quad \text{years old} \\
 \text{Jan is } & \quad \text{years old}
 \end{align*}
 \]

Show your work.

4. In how many years time will Jan be twice as old as Will?
 \[
 \text{In } \quad \text{years time}
 \]

Explain how you figured it out.
Jane’s T.V.

Jane is hoping to buy a large new television for her den, but she isn’t sure what size screen will be suitable for her wall.

This is because television screens are measured by their diagonal line.

This 42 inch screen measures 32 inches along its base.

1. What is the height of its screen? ____________
 Show how you know.

2. What is the area of the screen? ______________square inches

3. Jane would like to have a screen 40 inches wide and 32 inches high.
 About what screen size will she need to buy? ___________ inches
 Show how you figured this out
This is a blank page
Section B - 40 minutes
Lottery

Karl is thinking of holding a mini lottery to raise money.

I will sell tickets like this for $1 each.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Each player must put a cross through two numbers on the ticket and hand it in. At the end of the week I will draw out two balls from a bag.

Every player who has chosen the same two numbers as shown on the balls will win a cash prize of $10.

1. How many ways are there of choosing two different numbers on the ticket? Show all your work.
Lottery continued

2. Will the lottery be a good money raiser?
 Explain your reasoning, and show all your calculations.

__
__
__
__
__
Imagine that you have just uncovered this old Roman floor mosaic in Spain\(^1\).

You telephone New York to tell them about your exciting discovery.

Describe the complete pattern (shown above on the right) as precisely as you can, so someone else can draw it without seeing it. Try to describe the shapes, the symmetry and the angles.

\(^1\) The photograph was taken by David Mateos Garcia and is licensed under Creative Commons Attribution 2.0. See: [Wikimedia commons](https://commons.wikimedia.org/wiki)
Roman Mosaic continued